summaryrefslogtreecommitdiffstats
path: root/target/linux/realtek/files/drivers/net/wireless/rtl8192cd/1x_kmsm_aes.c
blob: d86efa86419b0d034a77f9a874c128b9a98a7681 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

/* This is an independent implementation of the encryption algorithm:   */
/*                                                                      */
/*         RIJNDAEL by Joan Daemen and Vincent Rijmen                   */
/*                                                                      */
/* which is a candidate algorithm in the Advanced Encryption Standard   */
/* programme of the US National Institute of Standards and Technology.  */
/*                                                                      */
/* Copyright in this implementation is held by Dr B R Gladman but I     */
/* hereby give permission for its free direct or derivative use subject */
/* to acknowledgment of its origin and compliance with any conditions   */
/* that the originators of the algorithm place on its exploitation.     */
/*                                                                      */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999     */

#if 0
#include "stdafx.h"
#include <time.h>
#include <string.h>
#include <assert.h>
#endif

#ifdef __KERNEL__
#include <linux/time.h>
#include <linux/string.h>
#include <linux/slab.h>
#elif defined(__ECOS)
#include <cyg/hal/plf_intr.h>
#include <cyg/io/eth/rltk/819x/wrapper/sys_support.h>
#include <cyg/io/eth/rltk/819x/wrapper/skbuff.h>
#include <cyg/io/eth/rltk/819x/wrapper/timer.h>
#include <cyg/io/eth/rltk/819x/wrapper/wrapper.h>
#endif

#include "./8192cd_cfg.h"

#ifdef INCLUDE_WPA_PSK
#ifdef RTL_WPA2
//#define MODULE_TEST

/*#include "aes_defs.h" */
#ifdef	_SHOW_
#define	_VERBOSE_	1
#elif !defined(_VERBOSE_)
#define	_VERBOSE_	0
#endif

// david, move define to Makefile
// kenny
//#define BIG_ENDIAN 1

#if   defined(__BORLANDC__)	/* show what compiler we used */
#define	COMPILER_ID "Borland"
//#define	LITTLE_ENDIAN	1
// modified by chilong
#define	AUTH_LITTLE_ENDIAN	1
#elif defined(_MSC_VER)
#define	COMPILER_ID "Microsoft"
//#define	LITTLE_ENDIAN	1
// modified by chilong
#define	AUTH_LITTLE_ENDIAN	1
#elif defined(__GNUC__)
#define	COMPILER_ID "GNU"
/* marked by chilong
#ifndef BIG_ENDIAN		// assume gcc = little-endian, unless told otherwise
#define	LITTLE_ENDIAN	1
#endif
*/
// modified by chilong
#ifndef _BIG_ENDIAN_		// assume gcc = little-endian, unless told otherwise
#define	AUTH_LITTLE_ENDIAN	1
#endif
// modified by chilong

#else				/* assume big endian, if compiler is unknown */
#define	COMPILER_ID "Unknown"
#endif

/* 1. Standard types for AES cryptography source code               */

typedef unsigned char   u08b; /* an 8 bit unsigned character type */
typedef unsigned short  u16b; /* a 16 bit unsigned integer type   */
typedef unsigned long   u32b; /* a 32 bit unsigned integer type   */

#ifndef _RTL_WPA_WINDOW
#ifndef __LINUX_2_6__
#ifndef __ECOS
typedef int bool;
#endif
#endif
#endif

/* 2. Standard interface for AES cryptographic routines             */

/* These are all based on 32-bit unsigned values and will therefore */
/* require endian conversions for big-endian architectures          */

#ifdef  __cplusplus
    extern "C"
    {
#endif
    u32b *  AES_SetKey (const u32b in_key[ ], const u32b key_len);
    void    AES_Encrypt(const u32b in_blk[4], u32b out_blk[4]);
    void    AES_Decrypt(const u32b in_blk[4], u32b out_blk[4]);
#ifdef  __cplusplus
    };
#endif

/* 3. Basic macros for speeding up generic operations               */

/* Circular rotate of 32 bit values                                 */

#ifdef _MSC_VER

#include <stdlib.h>
#pragma intrinsic(_lrotr,_lrotl)
#define rotr(x,n) _lrotr(x,n)
#define rotl(x,n) _lrotl(x,n)

#else

#define rotr(x,n)   (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(x,n)   (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))

#endif

/* Extract byte from a 32 bit quantity (little endian notation)     */

#define byte(x,n)   ((u08b)((x) >> (8 * n)))

/* For inverting byte order in input/output 32 bit words, if needed  */

// #ifdef  LITTLE_ENDIAN
// modified by chilong
#ifdef  AUTH_LITTLE_ENDIAN
#define bswap(x)    (x)
#else
#define bswap(x)    ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
#endif


//end of aes_def.h

/*------------------ DLW debug code */
#if	_VERBOSE_
#include <stdio.h>
int		rNum;


void ShowBlk(const u32b *b,int final)
	{
	int  i,j;
	u32b x;
	u08b a;

	printf("%s %2d: ",(final) ? "Final" : "Round",rNum++);
	for (i=0;i<4;i++)
		{
		printf(" ");
		x = b[i];			/* always used internally as "little-endian" */
		for (j=0;j<4;j++)
			{
			a = byte(x,j);
			printf(" %02X",a);
			}
		}
	printf("\n");
	}

void ShowKeySched(const u32b *key,int cnt,const char *hdrMsg)
	{
	int  i,j;
	u32b x;
	u08b a;

	printf("%s\n",hdrMsg);
	for (i=0;i<4*cnt;i++)
		{
		x = key[i];		/* key always used as "little-endian" */
		printf(" ");
		for (j=0;j<4;j++)
			{
			a = byte(x,j);
			printf(" %02X",a);
			}
		if ((i%4) == 3) printf("\n");
		}
	}
#define	SetR(r)	{ rNum = r; }
#else
#define	ShowBlk(b,f)
#define	SetR(r)
#define	ShowKeySched(key,cnt,hdrMsg)
#endif
/*---------------- end of DLW debug */


#define LARGE_TABLES

u08b  pow_tab[256];
u08b  log_tab[256];
u08b  sbx_tab[256];
u08b  isb_tab[256];
u32b  rco_tab[ 10];
u32b  ft_tab[4][256];
u32b  it_tab[4][256];

#ifdef  LARGE_TABLES
  u32b  fl_tab[4][256];
  u32b  il_tab[4][256];
#endif

u32b  tab_gen = 0;

u32b  k_len;
u32b  e_key[60];
u32b  d_key[60];

#define ff_mult(a,b)    (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)

#define f_rn(bo, bi, n, k)                          \
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^             \
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rn(bo, bi, n, k)                          \
    bo[n] =  it_tab[0][byte(bi[n],0)] ^             \
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#ifdef LARGE_TABLES

#define ls_box(x)                \
    ( fl_tab[0][byte(x, 0)] ^    \
      fl_tab[1][byte(x, 1)] ^    \
      fl_tab[2][byte(x, 2)] ^    \
      fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)                          \
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^             \
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rl(bo, bi, n, k)                          \
    bo[n] =  il_tab[0][byte(bi[n],0)] ^             \
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#else

#define ls_box(x)                            \
    ((u32b)sbx_tab[byte(x, 0)] <<  0) ^    \
    ((u32b)sbx_tab[byte(x, 1)] <<  8) ^    \
    ((u32b)sbx_tab[byte(x, 2)] << 16) ^    \
    ((u32b)sbx_tab[byte(x, 3)] << 24)

#define f_rl(bo, bi, n, k)                                      \
    bo[n] = (u32b)sbx_tab[byte(bi[n],0)] ^                    \
        rotl(((u32b)sbx_tab[byte(bi[(n + 1) & 3],1)]),  8) ^  \
        rotl(((u32b)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
        rotl(((u32b)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)

#define i_rl(bo, bi, n, k)                                      \
    bo[n] = (u32b)isb_tab[byte(bi[n],0)] ^                    \
        rotl(((u32b)isb_tab[byte(bi[(n + 3) & 3],1)]),  8) ^  \
        rotl(((u32b)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
        rotl(((u32b)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)

#endif

void gen_tabs(void)
{   u32b  i, t;
    u08b  p, q;

    /* log and power tables for GF(2**8) finite field with  */
    /* 0x11b as modular polynomial - the simplest prmitive  */
    /* root is 0x11, used here to generate the tables       */

    for(i = 0,p = 1; i < 256; ++i)
    {
        pow_tab[i] = (u08b)p; log_tab[p] = (u08b)i;

        p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
    }

    log_tab[1] = 0; p = 1;

    for(i = 0; i < 10; ++i)
    {
        rco_tab[i] = p;

        p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
    }

    /* note that the affine byte transformation matrix in   */
    /* rijndael specification is in big endian format with  */
    /* bit 0 as the most significant bit. In the remainder  */
    /* of the specification the bits are numbered from the  */
    /* least significant end of a byte.                     */

    for(i = 0; i < 256; ++i)
    {
        p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
        q = (q >> 7) | (q << 1); p ^= q;
        q = (q >> 7) | (q << 1); p ^= q;
        q = (q >> 7) | (q << 1); p ^= q;
        q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
        sbx_tab[i] = (u08b)p; isb_tab[p] = (u08b)i;
    }

    for(i = 0; i < 256; ++i)
    {
        p = sbx_tab[i];

#ifdef  LARGE_TABLES

        t = p; fl_tab[0][i] = t;
        fl_tab[1][i] = rotl(t,  8);
        fl_tab[2][i] = rotl(t, 16);
        fl_tab[3][i] = rotl(t, 24);
#endif
        t = ((u32b)ff_mult(2, p)) |
            ((u32b)p <<  8) |
            ((u32b)p << 16) |
            ((u32b)ff_mult(3, p) << 24);

        ft_tab[0][i] = t;
        ft_tab[1][i] = rotl(t,  8);
        ft_tab[2][i] = rotl(t, 16);
        ft_tab[3][i] = rotl(t, 24);

        p = isb_tab[i];

#ifdef  LARGE_TABLES

        t = p; il_tab[0][i] = t;
        il_tab[1][i] = rotl(t,  8);
        il_tab[2][i] = rotl(t, 16);
        il_tab[3][i] = rotl(t, 24);
#endif
        t = ((u32b)ff_mult(14, p)) |
            ((u32b)ff_mult( 9, p) <<  8) |
            ((u32b)ff_mult(13, p) << 16) |
            ((u32b)ff_mult(11, p) << 24);

        it_tab[0][i] = t;
        it_tab[1][i] = rotl(t,  8);
        it_tab[2][i] = rotl(t, 16);
        it_tab[3][i] = rotl(t, 24);

#if _VERBOSE_
		if (i<4)	/* helpful for debugging on new platform */
			{		/* (compare with results from known platform) */
			if (i==0)
				printf("%8s   : %08X %08X %08X %08X\n","rco_tab",
					   rco_tab[0],rco_tab[1],rco_tab[2],rco_tab[3]);
#define _ShowTab(tName)	printf("%8s[%d]: %08X %08X %08X %08X\n",#tName,i,	\
				   tName[0][i],tName[1][i],tName[2][i],tName[3][i]);
			_ShowTab(it_tab);
			_ShowTab(ft_tab);
#ifdef LARGE_TABLES
			_ShowTab(il_tab);
			_ShowTab(fl_tab);
#endif
			}
#endif
    }

    tab_gen = 1;
};

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)       \
    u   = star_x(x);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)

/* initialise the key schedule from the user supplied key   */

#define loop4(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
    t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
    t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
    t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
}

#define loop6(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[6 * i];     e_key[6 * i + 6] = t;    \
    t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;    \
    t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;    \
    t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;    \
    t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;   \
    t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;   \
}

#define loop8(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[8 * i];     e_key[8 * i + 8] = t;    \
    t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;    \
    t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;   \
    t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;   \
    t  = e_key[8 * i + 4] ^ ls_box(t);              \
    e_key[8 * i + 12] = t;                          \
    t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;   \
    t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;   \
    t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;   \
}

u32b *AES_SetKey(const u32b in_key[], const u32b key_len)
{   u32b  i, t, u, v, w;

    if(!tab_gen)
        gen_tabs();

    k_len = (key_len + 31) / 32;

    for (i=0;i<k_len;i++)
		e_key[i] = bswap(in_key[i]);
    t = e_key[k_len-1];

    switch(k_len)
    {
        case 4: for(i = 0; i < 10; ++i)
                    loop4(i);
                break;

        case 6: for(i = 0; i < 8; ++i)
                    loop6(i);
                break;

        case 8: for(i = 0; i < 7; ++i)
                    loop8(i);
                break;
    }

    d_key[0] = e_key[0]; d_key[1] = e_key[1];
    d_key[2] = e_key[2]; d_key[3] = e_key[3];

    for(i = 4; i < 4 * k_len + 24; ++i)
	{
		imix_col(d_key[i], e_key[i]);
    }
	ShowKeySched(e_key,4,"Encryption key schedule:");
	ShowKeySched(d_key,4,"Decryption key schedule:");

    return e_key;
};

/* encrypt a block of text  */
#define f_nround(bo, bi, k) \
    f_rn(bo, bi, 0, k);     \
    f_rn(bo, bi, 1, k);     \
    f_rn(bo, bi, 2, k);     \
    f_rn(bo, bi, 3, k);     \
	ShowBlk(bo,0);			\
    k += 4

#define f_lround(bo, bi, k) \
    f_rl(bo, bi, 0, k);     \
    f_rl(bo, bi, 1, k);     \
    f_rl(bo, bi, 2, k);     \
    f_rl(bo, bi, 3, k);		\
	ShowBlk(bo,1);

void AES_Encrypt(const u32b in_blk[4], u32b out_blk[4])
{   u32b  b0[4], b1[4], *kp;

    b0[0] = bswap(in_blk[0]) ^ e_key[0];
    b0[1] = bswap(in_blk[1]) ^ e_key[1];
    b0[2] = bswap(in_blk[2]) ^ e_key[2];
    b0[3] = bswap(in_blk[3]) ^ e_key[3];

	SetR(1); ShowBlk(b0,0);

    kp = e_key + 4;

    if(k_len > 6)
    {
        f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    }

    if(k_len > 4)
    {
        f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    }

    f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    f_nround(b1, b0, kp); f_nround(b0, b1, kp);
    f_nround(b1, b0, kp); f_lround(b0, b1, kp);

    out_blk[0] = bswap(b0[0]);
    out_blk[1] = bswap(b0[1]);
    out_blk[2] = bswap(b0[2]);
    out_blk[3] = bswap(b0[3]);
};

/* decrypt a block of text  */

#define i_nround(bo, bi, k) \
    i_rn(bo, bi, 0, k);     \
    i_rn(bo, bi, 1, k);     \
    i_rn(bo, bi, 2, k);     \
    i_rn(bo, bi, 3, k);     \
    k -= 4

#define i_lround(bo, bi, k) \
    i_rl(bo, bi, 0, k);     \
    i_rl(bo, bi, 1, k);     \
    i_rl(bo, bi, 2, k);     \
    i_rl(bo, bi, 3, k)

void AES_Decrypt(const u32b in_blk[4], u32b out_blk[4])
{   u32b  b0[4], b1[4], *kp;

    b0[0] = bswap(in_blk[0]) ^ e_key[4 * k_len + 24];
    b0[1] = bswap(in_blk[1]) ^ e_key[4 * k_len + 25];
    b0[2] = bswap(in_blk[2]) ^ e_key[4 * k_len + 26];
    b0[3] = bswap(in_blk[3]) ^ e_key[4 * k_len + 27];

    kp = d_key + 4 * (k_len + 5);

    if(k_len > 6)
    {
        i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    }

    if(k_len > 4)
    {
        i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    }

    i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    i_nround(b1, b0, kp); i_nround(b0, b1, kp);
    i_nround(b1, b0, kp); i_lround(b0, b1, kp);

    out_blk[0] = bswap(b0[0]);
    out_blk[1] = bswap(b0[1]);
    out_blk[2] = bswap(b0[2]);
    out_blk[3] = bswap(b0[3]);
};

enum
    {
    BLK_SIZE    =   16,     // # octets in an AES block
    MAX_PACKET  =   3*512,  // largest packet size
    N_RESERVED  =   0,      // reserved nonce octet value
    A_DATA      =   0x40,   // the Adata bit in the flags
    M_SHIFT     =   3,      // how much to shift the 3-bit M field
    L_SHIFT     =   0,      // how much to shift the 3-bit L field
    L_SIZE      =   2       // size of the l(m) length field (in octets)
    };

typedef union _block                 // AES cipher block
    {
    u32b  x[BLK_SIZE/4];    // access as 8-bit octets or 32-bit words
    u08b  b[BLK_SIZE];
    }block;

typedef struct _packet
    {
    bool    encrypted;      // TRUE if encrypted
    u08b    TA[6];          // xmit address
    int     micLength;      // # octets of MIC appended to plaintext (M)
    int     clrCount;       // # cleartext octets covered by MIC
    u32b    pktNum[2];      // unique packet sequence number (like WEP IV)
    block   key;            // the encryption key (K)
    int     length;         // # octets in data[]
    u08b    data[MAX_PACKET+2*BLK_SIZE];    // packet contents
    }packet;


/*
	input : 256 bits, 32 bytes, 4 block for TKIP
			128 bits, 16 bytes, 2 block for CCMP, WRAP, and WEP
		up to 32 block for WPA2
	output: 8 bytes MIC | Wraped key data
*/
#define BLOCKSIZE8	8
void AES_WRAP(u08b * plain, int plain_len,
			  u08b * iv,	int iv_len,
			  u08b * kek,	int kek_len,
			  u08b *cipher, u16b *cipher_len)

{
	int		i, j, k, nblock = plain_len/BLOCKSIZE8;
#ifdef RTL_WPA2
	static	u08b	R[32][BLOCKSIZE8], A[BLOCKSIZE8], xor[BLOCKSIZE8];
#else
	u08b	R[4][BLOCKSIZE8], A[BLOCKSIZE8], xor[BLOCKSIZE8];
#endif

	static packet  p;
	static block   m,x;

	memcpy(&p.key.b , kek, kek_len);
	AES_SetKey(p.key.x, BLK_SIZE*8);     // run the key schedule

	//Initialize Variable
	memcpy(A, iv, BLOCKSIZE8);
	for(i = 0; i < nblock ; i++)
		memcpy(&R[i], plain + i*BLOCKSIZE8, BLOCKSIZE8);

	//Caalculate Intermediate Values

	for(j = 0 ; j < 6 ; j++ )
		for (i = 0 ; i < nblock ; i++)
		{
			memcpy(&m.b, A, BLOCKSIZE8);
			memcpy((&m.b[0]) + BLOCKSIZE8, &(R[i]), BLOCKSIZE8);
			// => B = AES(K, A|R[i])
			AES_Encrypt(m.x,x.x);
			// => A = MSB(64,B) ^t  where t = (n*j) + i
			memset(xor, 0, sizeof xor);
			xor[7] |= ((nblock * j) + i + 1);
			for(k = 0 ; k < 8 ; k++)
				A[k] = x.b[k] ^ xor[k];
			// => R[i] = LSB(64,B)
			for(k = 0 ; k < 8 ; k++)
				R[i][k] = x.b[k + BLOCKSIZE8];

		}

	//Output the result
	memcpy(cipher, A, BLOCKSIZE8);
	for(i = 0; i<nblock ; i++)
		memcpy(cipher + (i+1)*BLOCKSIZE8, &R[i], BLOCKSIZE8);
	*cipher_len = plain_len + BLOCKSIZE8;

}

void AES_UnWRAP(u08b * cipher, int cipher_len,
			    u08b * kek,	int kek_len,
			    u08b * plain)
{

	int		i, j, k, nblock = (cipher_len/BLOCKSIZE8) - 1;
#ifdef RTL_WPA2
	u08b	R[32][BLOCKSIZE8], A[BLOCKSIZE8], xor[BLOCKSIZE8];
#else
	u08b	R[4][BLOCKSIZE8], A[BLOCKSIZE8], xor[BLOCKSIZE8];
#endif
	packet  *p;
	block   m,x;

	p = (packet *)kmalloc(sizeof(packet), GFP_ATOMIC);
	if (p == NULL)
		return;

	memcpy(p->key.b , kek, kek_len);
	AES_SetKey(p->key.x, BLK_SIZE*8);     // run the key schedule

	//Initialize Variable
	memcpy(A, cipher, BLOCKSIZE8);
	for(i = 0; i < nblock ; i++)
		memcpy(&R[i], cipher + (i+1)*BLOCKSIZE8, BLOCKSIZE8);

	//Compute internediate Value
	for(j=5 ; j>=0 ; j--)
		for(i= nblock-1	; i>=0 ; i--)
		{
			// => B = AES-1((A^t) |R[i])

			memset(xor, 0, sizeof xor);
			xor[7] |= ((nblock * j) + i + 1);
			for(k = 0 ; k < 8 ; k++)
				x.b[k] = A[k] ^ xor[k];
			memcpy((&x.b[0]) + BLOCKSIZE8, &(R[i]), BLOCKSIZE8);

			AES_Decrypt(x.x,m.x);

			memcpy(A, &m.b[0], BLOCKSIZE8);
			//for(k=0 ; k<BLOCKSIZE8 ; k++)
			//	A[k] = m.b[k];
			for(k=0 ; k<BLOCKSIZE8 ; k++)
				R[i][k] = m.b[k + BLOCKSIZE8];

		}
	memcpy(plain, A, BLOCKSIZE8);
	for(i = 0; i < nblock ; i++)
		memcpy(plain + (i+1)*BLOCKSIZE8, &R[i],  BLOCKSIZE8);
	kfree(p);
}

#ifdef MODULE_TEST
void TestAESWRAP()
{

	unsigned char kek[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F};
	unsigned char plaintext[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
								 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

	unsigned char cipher[16+ 8];

/*
	unsigned char iv[] = {0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6};
	unsigned char plaintext1[] ={0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
						   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F};
	AES_WRAP(plaintext, 16,
			 iv, 8,
			 kek, 16,
			 cipher);
*/


	AES_UnWRAP(cipher, 24,
			kek, 16,
			plaintext);
}
#endif
#endif // RTL_WPA2
#endif // INCLUDE_WPA_PSK