summaryrefslogtreecommitdiffstats
path: root/package/uboot-ifxmips/files/board/danube/danube.c
blob: b6174ba6d8afdd5ede3e1d1854ed580f6f6b3227 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
 * (C) Copyright 2003
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <command.h>
#include <asm/addrspace.h>
#include <asm/danube.h>

#ifdef DANUBE_USE_DDR_RAM
long int initdram(int board_type)
{
	return (1024*1024*DANUBE_DDR_RAM_SIZE);
}
#else
extern uint danube_get_cpuclk(void);

static ulong max_sdram_size(void)     /* per Chip Select */
{
	/* The only supported SDRAM data width is 16bit.
	 */
#define CFG_DW	4

	/* The only supported number of SDRAM banks is 4.
	 */
#define CFG_NB	4

	ulong cfgpb0 = *DANUBE_SDRAM_MC_CFGPB0;
	int   cols   = cfgpb0 & 0xF;
	int   rows   = (cfgpb0 & 0xF0) >> 4;
	ulong size   = (1 << (rows + cols)) * CFG_DW * CFG_NB;

	return size;
}

/*
 * Check memory range for valid RAM. A simple memory test determines
 * the actually available RAM size between addresses `base' and
 * `base + maxsize'. 
 */

static long int dram_size(long int *base, long int maxsize)
{
	volatile long int *addr;
	ulong cnt, val;
	ulong save[32];			/* to make test non-destructive */
	unsigned char i = 0;

	for (cnt = (maxsize / sizeof (long)) >> 1; cnt > 0; cnt >>= 1) {
		addr = base + cnt;		/* pointer arith! */

		save[i++] = *addr;
		*addr = ~cnt;
	}

	/* write 0 to base address */
	addr = base;
	save[i] = *addr;
	*addr = 0;

	/* check at base address */
	if ((val = *addr) != 0) {
		*addr = save[i];
		return (0);
	}

	for (cnt = 1; cnt < maxsize / sizeof (long); cnt <<= 1) {
		addr = base + cnt;		/* pointer arith! */

		val = *addr;
		*addr = save[--i];

		if (val != (~cnt)) {
			return (cnt * sizeof (long));
		}
	}
	return (maxsize);
}

long int initdram(int board_type)
{
	int   rows, cols, best_val = *DANUBE_SDRAM_MC_CFGPB0;
	ulong size, max_size       = 0;
	ulong our_address;

	/* load t9 into our_address */	
	asm volatile ("move %0, $25" : "=r" (our_address) :);

	/* Can't probe for RAM size unless we are running from Flash.
	 * find out whether running from DRAM or Flash.
	 */
	if (PHYSADDR(our_address) < PHYSADDR(PHYS_FLASH_1))
	{
		return max_sdram_size();
	}

	for (cols = 0x8; cols <= 0xC; cols++)
	{
		for (rows = 0xB; rows <= 0xD; rows++)
		{
			*DANUBE_SDRAM_MC_CFGPB0 = (0x14 << 8) |
			                           (rows << 4) | cols;
			size = dram_size((ulong *)CFG_SDRAM_BASE,
			                                     max_sdram_size());

			if (size > max_size)
			{
				best_val = *DANUBE_SDRAM_MC_CFGPB0;
				max_size = size;
			}
		}
	}

	*DANUBE_SDRAM_MC_CFGPB0 = best_val;
	return max_size;
}
#endif

int checkboard (void)
{
	/*    No such register in Amazon */
#if 0
	unsigned long chipid = *AMAZON_MCD_CHIPID;
	int part_num;

	puts ("Board: AMAZON ");
	part_num = AMAZON_MCD_CHIPID_PART_NUMBER_GET(chipid);
	switch (part_num) {
	case AMAZON_CHIPID_STANDARD:
		printf ("Standard Version, ");
		break;
	case AMAZON_CHIPID_YANGTSE:
		printf ("Yangtse Version, ");
		break;
	default:
		printf ("Unknown Part Number 0x%x ", part_num);
		break;
	}

	printf ("Chip V1.%ld, ", AMAZON_MCD_CHIPID_VERSION_GET(chipid));
     

	printf("CPU Speed %d MHz\n", danube_get_cpuclk()/1000000);
	
#endif
	return 0;
}


/*
 * Disk On Chip (NAND) Millenium initialization.
 * The NAND lives in the CS2* space
 */
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
extern void
nand_probe(ulong physadr);

#define AT91_SMARTMEDIA_BASE 0x40000000  /* physical address to access memory on NCS3 */
void
nand_init(void)
{
       	int devtype;
	/* Configure EBU */
//TODO: should we keep this?
        //Set GPIO23 to be Flash CS1;
	*DANUBE_GPIO_P1_ALTSEL0 = *DANUBE_GPIO_P1_ALTSEL0 | (1<<7);
	*DANUBE_GPIO_P1_ALTSEL1 = *DANUBE_GPIO_P1_ALTSEL1 & ~(1<<7);
	*DANUBE_GPIO_P1_DIR = *DANUBE_GPIO_P1_DIR | (1<<7) ;
	*DANUBE_GPIO_P1_OD = *DANUBE_GPIO_P1_OD | (1<<7) ;
	
	*EBU_ADDR_SEL_1 = (NAND_BASE_ADDRESS&0x1fffff00)|0x31;
	/* byte swap;minimum delay*/
	*EBU_CON_1      = 0x40C155;
	*EBU_NAND_CON   = 0x000005F3;

	/* Set bus signals to inactive */
	 NAND_READY_CLEAR;

	 NAND_CE_CLEAR;
         nand_probe(NAND_BASE_ADDRESS);



	//nand_probe(AT91_SMARTMEDIA_BASE);
}
#endif