summaryrefslogtreecommitdiffstats
path: root/openwrt/package/linux/kernel-source/arch/mips/brcm-boards/bcm947xx/sbmips.c
blob: 6daaeb78c05525ab6e17cc36599d71df09ad1600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/*
 * BCM47XX Sonics SiliconBackplane MIPS core routines
 *
 * Copyright 2004, Broadcom Corporation
 * All Rights Reserved.
 * 
 * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
 * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
 * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
 *
 * $Id$
 */

#include <typedefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <bcmnvram.h>
#include <bcmutils.h>
#include <hndmips.h>
#include <sbconfig.h>
#include <sbextif.h>
#include <sbchipc.h>
#include <sbmemc.h>

/*
 * Memory segments (32bit kernel mode addresses)
 */
#undef KUSEG
#undef KSEG0
#undef KSEG1
#undef KSEG2
#undef KSEG3
#define KUSEG		0x00000000
#define KSEG0		0x80000000
#define KSEG1		0xa0000000
#define KSEG2		0xc0000000
#define KSEG3		0xe0000000

/*
 * Map an address to a certain kernel segment
 */
#undef KSEG0ADDR
#undef KSEG1ADDR
#undef KSEG2ADDR
#undef KSEG3ADDR
#define KSEG0ADDR(a)		(((a) & 0x1fffffff) | KSEG0)
#define KSEG1ADDR(a)		(((a) & 0x1fffffff) | KSEG1)
#define KSEG2ADDR(a)		(((a) & 0x1fffffff) | KSEG2)
#define KSEG3ADDR(a)		(((a) & 0x1fffffff) | KSEG3)

/*
 * The following macros are especially useful for __asm__
 * inline assembler.
 */
#ifndef __STR
#define __STR(x) #x
#endif
#ifndef STR
#define STR(x) __STR(x)
#endif

/*  *********************************************************************
    *  CP0 Registers 
    ********************************************************************* */

#define C0_INX		0		/* CP0: TLB Index */
#define C0_RAND		1		/* CP0: TLB Random */
#define C0_TLBLO0	2		/* CP0: TLB EntryLo0 */
#define C0_TLBLO	C0_TLBLO0	/* CP0: TLB EntryLo0 */
#define C0_TLBLO1	3		/* CP0: TLB EntryLo1 */
#define C0_CTEXT	4		/* CP0: Context */
#define C0_PGMASK	5		/* CP0: TLB PageMask */
#define C0_WIRED	6		/* CP0: TLB Wired */
#define C0_BADVADDR	8		/* CP0: Bad Virtual Address */
#define C0_COUNT 	9		/* CP0: Count */
#define C0_TLBHI	10		/* CP0: TLB EntryHi */
#define C0_COMPARE	11		/* CP0: Compare */
#define C0_SR		12		/* CP0: Processor Status */
#define C0_STATUS	C0_SR		/* CP0: Processor Status */
#define C0_CAUSE	13		/* CP0: Exception Cause */
#define C0_EPC		14		/* CP0: Exception PC */
#define C0_PRID		15		/* CP0: Processor Revision Indentifier */
#define C0_CONFIG	16		/* CP0: Config */
#define C0_LLADDR	17		/* CP0: LLAddr */
#define C0_WATCHLO	18		/* CP0: WatchpointLo */
#define C0_WATCHHI	19		/* CP0: WatchpointHi */
#define C0_XCTEXT	20		/* CP0: XContext */
#define C0_DIAGNOSTIC	22		/* CP0: Diagnostic */
#define C0_BROADCOM	C0_DIAGNOSTIC	/* CP0: Broadcom Register */
#define C0_ECC		26		/* CP0: ECC */
#define C0_CACHEERR	27		/* CP0: CacheErr */
#define C0_TAGLO	28		/* CP0: TagLo */
#define C0_TAGHI	29		/* CP0: TagHi */
#define C0_ERREPC	30		/* CP0: ErrorEPC */

/*
 * Macros to access the system control coprocessor
 */

#define MFC0(source, sel)					\
({								\
	int __res;						\
	__asm__ __volatile__(					\
	".set\tnoreorder\n\t"					\
	".set\tnoat\n\t"					\
	".word\t"STR(0x40010000 | ((source)<<11) | (sel))"\n\t"	\
	"move\t%0,$1\n\t"					\
	".set\tat\n\t"						\
	".set\treorder"						\
	:"=r" (__res)						\
	:							\
	:"$1");							\
	__res;							\
})

#define MTC0(source, sel, value)				\
do {								\
	__asm__ __volatile__(					\
	".set\tnoreorder\n\t"					\
	".set\tnoat\n\t"					\
	"move\t$1,%z0\n\t"					\
	".word\t"STR(0x40810000 | ((source)<<11) | (sel))"\n\t"	\
	".set\tat\n\t"						\
	".set\treorder"						\
	:							\
	:"Jr" (value)						\
	:"$1");							\
} while (0)

/*
 * R4x00 interrupt enable / cause bits
 */
#undef IE_SW0
#undef IE_SW1
#undef IE_IRQ0
#undef IE_IRQ1
#undef IE_IRQ2
#undef IE_IRQ3
#undef IE_IRQ4
#undef IE_IRQ5
#define IE_SW0		(1<< 8)
#define IE_SW1		(1<< 9)
#define IE_IRQ0		(1<<10)
#define IE_IRQ1		(1<<11)
#define IE_IRQ2		(1<<12)
#define IE_IRQ3		(1<<13)
#define IE_IRQ4		(1<<14)
#define IE_IRQ5		(1<<15)

/*
 * Bitfields in the R4xx0 cp0 status register
 */
#define ST0_IE			0x00000001
#define ST0_EXL			0x00000002
#define ST0_ERL			0x00000004
#define ST0_KSU			0x00000018
#  define KSU_USER		0x00000010
#  define KSU_SUPERVISOR	0x00000008
#  define KSU_KERNEL		0x00000000
#define ST0_UX			0x00000020
#define ST0_SX			0x00000040
#define ST0_KX 			0x00000080
#define ST0_DE			0x00010000
#define ST0_CE			0x00020000

/*
 * Status register bits available in all MIPS CPUs.
 */
#define ST0_IM			0x0000ff00
#define ST0_CH			0x00040000
#define ST0_SR			0x00100000
#define ST0_TS			0x00200000
#define ST0_BEV			0x00400000
#define ST0_RE			0x02000000
#define ST0_FR			0x04000000
#define ST0_CU			0xf0000000
#define ST0_CU0			0x10000000
#define ST0_CU1			0x20000000
#define ST0_CU2			0x40000000
#define ST0_CU3			0x80000000
#define ST0_XX			0x80000000	/* MIPS IV naming */

/*
 * Cache Operations
 */

#ifndef Fill_I
#define Fill_I			0x14
#endif

#define cache_unroll(base,op)			\
	__asm__ __volatile__("			\
		.set noreorder;			\
		.set mips3;			\
		cache %1, (%0);			\
		.set mips0;			\
		.set reorder"			\
		:				\
		: "r" (base),			\
		  "i" (op));

/* 
 * These are the UART port assignments, expressed as offsets from the base
 * register.  These assignments should hold for any serial port based on
 * a 8250, 16450, or 16550(A).
 */

#define UART_MCR	4	/* Out: Modem Control Register */
#define UART_MSR	6	/* In:  Modem Status Register */
#define UART_MCR_LOOP	0x10	/* Enable loopback test mode */

/* 
 * Returns TRUE if an external UART exists at the given base
 * register.
 */
static bool
serial_exists(uint8 *regs)
{
	uint8 save_mcr, status1;

	save_mcr = R_REG(&regs[UART_MCR]);
	W_REG(&regs[UART_MCR], UART_MCR_LOOP | 0x0a);
	status1 = R_REG(&regs[UART_MSR]) & 0xf0;
	W_REG(&regs[UART_MCR], save_mcr);

	return (status1 == 0x90);
}

/* 
 * Initializes UART access. The callback function will be called once
 * per found UART.
*/
void
sb_serial_init(void *sbh, void (*add)(void *regs, uint irq, uint baud_base, uint reg_shift))
{
	void *regs;
	ulong base;
	uint irq;
	int i, n;

	if ((regs = sb_setcore(sbh, SB_EXTIF, 0))) {
		extifregs_t *eir = (extifregs_t *) regs;
		sbconfig_t *sb;

		/* Determine external UART register base */
		sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF);
		base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1)));

		/* Determine IRQ */
		irq = sb_irq(sbh);

		/* Disable GPIO interrupt initially */
		W_REG(&eir->gpiointpolarity, 0);
		W_REG(&eir->gpiointmask, 0);

		/* Search for external UARTs */
		n = 2;
		for (i = 0; i < 2; i++) {
			regs = (void *) REG_MAP(base + (i * 8), 8);
			if (serial_exists(regs)) {
				/* Set GPIO 1 to be the external UART IRQ */
				W_REG(&eir->gpiointmask, 2);
				if (add)
					add(regs, irq, 13500000, 0);
			}
		}

		/* Add internal UART if enabled */
		if (R_REG(&eir->corecontrol) & CC_UE)
			if (add)
				add((void *) &eir->uartdata, irq, sb_clock(sbh), 2);
	} else if ((regs = sb_setcore(sbh, SB_CC, 0))) {
		chipcregs_t *cc = (chipcregs_t *) regs;
		uint32 rev, cap, pll, baud_base, div;

		/* Determine core revision and capabilities */
		rev = sb_corerev(sbh);
		cap = R_REG(&cc->capabilities);
		pll = cap & CAP_PLL_MASK;

		/* Determine IRQ */
		irq = sb_irq(sbh);

		if (pll == PLL_TYPE1) {
			/* PLL clock */
			baud_base = sb_clock_rate(pll,
						  R_REG(&cc->clockcontrol_n),
						  R_REG(&cc->clockcontrol_m2));
			div = 1;
		} else if (rev >= 3) {
			/* Internal backplane clock */
			baud_base = sb_clock_rate(pll,
						  R_REG(&cc->clockcontrol_n),
						  R_REG(&cc->clockcontrol_sb));
			div = 2;	/* Minimum divisor */
			W_REG(&cc->clkdiv, ((R_REG(&cc->clkdiv) & ~CLKD_UART) | div));
		} else {
			/* Fixed internal backplane clock */
			baud_base = 88000000;
			div = 48;
		}

		/* Clock source depends on strapping if UartClkOverride is unset */
		if ((rev > 0) && ((R_REG(&cc->corecontrol) & CC_UARTCLKO) == 0)) {
			if ((cap & CAP_UCLKSEL) == CAP_UINTCLK) {
				/* Internal divided backplane clock */
				baud_base /= div;
			} else {
				/* Assume external clock of 1.8432 MHz */
				baud_base = 1843200;
			}
		}

		/* Add internal UARTs */
		n = cap & CAP_UARTS_MASK;
		for (i = 0; i < n; i++) {
			/* Register offset changed after revision 0 */
			if (rev)
				regs = (void *)((ulong) &cc->uart0data + (i * 256));
			else
				regs = (void *)((ulong) &cc->uart0data + (i * 8));

			if (add)
				add(regs, irq, baud_base, 0);
		}
	}
}

/* Returns the SB interrupt flag of the current core. */
uint32
sb_flag(void *sbh)
{
	void *regs;
	sbconfig_t *sb;

	regs = sb_coreregs(sbh);
	sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);

	return (R_REG(&sb->sbtpsflag) & SBTPS_NUM0_MASK);
}

static const uint32 sbips_int_mask[] = {
	0,
	SBIPS_INT1_MASK,
	SBIPS_INT2_MASK,
	SBIPS_INT3_MASK,
	SBIPS_INT4_MASK
};

static const uint32 sbips_int_shift[] = {
	0,
	0,
	SBIPS_INT2_SHIFT,
	SBIPS_INT3_SHIFT,
	SBIPS_INT4_SHIFT
};

/* 
 * Returns the MIPS IRQ assignment of the current core. If unassigned,
 * 0 is returned.
 */
uint
sb_irq(void *sbh)
{
	uint idx;
	void *regs;
	sbconfig_t *sb;
	uint32 flag, sbipsflag;
	uint irq = 0;

	flag = sb_flag(sbh);

	idx = sb_coreidx(sbh);

	if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
	    (regs = sb_setcore(sbh, SB_MIPS33, 0))) {
		sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);

		/* sbipsflag specifies which core is routed to interrupts 1 to 4 */
		sbipsflag = R_REG(&sb->sbipsflag);
		for (irq = 1; irq <= 4; irq++) {
			if (((sbipsflag & sbips_int_mask[irq]) >> sbips_int_shift[irq]) == flag)
				break;
		}
		if (irq == 5)
			irq = 0;
	}

	sb_setcoreidx(sbh, idx);

	return irq;
}

/* Clears the specified MIPS IRQ. */
static void
sb_clearirq(void *sbh, uint irq)
{
	void *regs;
	sbconfig_t *sb;

	if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
	    !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
		ASSERT(regs);
	sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);

	if (irq == 0)
		W_REG(&sb->sbintvec, 0);
	else
		OR_REG(&sb->sbipsflag, sbips_int_mask[irq]);
}

/* 
 * Assigns the specified MIPS IRQ to the specified core. Shared MIPS
 * IRQ 0 may be assigned more than once.
 */
static void
sb_setirq(void *sbh, uint irq, uint coreid, uint coreunit)
{
	void *regs;
	sbconfig_t *sb;
	uint32 flag;

	regs = sb_setcore(sbh, coreid, coreunit);
	ASSERT(regs);
	flag = sb_flag(sbh);

	if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
	    !(regs = sb_setcore(sbh, SB_MIPS33, 0)))
		ASSERT(regs);
	sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);

	if (irq == 0)
		OR_REG(&sb->sbintvec, 1 << flag);
	else {
		flag <<= sbips_int_shift[irq];
		ASSERT(!(flag & ~sbips_int_mask[irq]));
		flag |= R_REG(&sb->sbipsflag) & ~sbips_int_mask[irq];
		W_REG(&sb->sbipsflag, flag);
	}
}	

/* 
 * Initializes clocks and interrupts. SB and NVRAM access must be
 * initialized prior to calling.
 */
void
sb_mips_init(void *sbh)
{
	ulong hz, ns, tmp;
	extifregs_t *eir;
	chipcregs_t *cc;
	char *value;
	uint irq;

	/* Figure out current SB clock speed */
	if ((hz = sb_clock(sbh)) == 0)
		hz = 100000000;
	ns = 1000000000 / hz;

	/* Setup external interface timing */
	if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
		/* Initialize extif so we can get to the LEDs and external UART */
		W_REG(&eir->prog_config, CF_EN);

		/* Set timing for the flash */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
		tmp = tmp | CEIL(120, ns);		/* W0 = 120nS */
		W_REG(&eir->prog_waitcount, tmp);	/* 0x01020a0c for a 100Mhz clock */

		/* Set programmable interface timing for external uart */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
		tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
		tmp = tmp | CEIL(120, ns);		/* W0 = 120nS */
		W_REG(&eir->prog_waitcount, tmp);	/* 0x01020a0c for a 100Mhz clock */
	} else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
		/* Set timing for the flash */
		tmp = CEIL(10, ns) << FW_W3_SHIFT;	/* W3 = 10nS */
		tmp |= CEIL(10, ns) << FW_W1_SHIFT;	/* W1 = 10nS */
		tmp |= CEIL(120, ns);			/* W0 = 120nS */
		W_REG(&cc->flash_waitcount, tmp);

		W_REG(&cc->pcmcia_memwait, tmp);
	}

	/* Chip specific initialization */
	switch (sb_chip(sbh)) {
	case BCM4710_DEVICE_ID:
		/* Clear interrupt map */
		for (irq = 0; irq <= 4; irq++)
			sb_clearirq(sbh, irq);
		sb_setirq(sbh, 0, SB_CODEC, 0);
		sb_setirq(sbh, 0, SB_EXTIF, 0);
		sb_setirq(sbh, 2, SB_ENET, 1);
		sb_setirq(sbh, 3, SB_ILINE20, 0);
		sb_setirq(sbh, 4, SB_PCI, 0);
		ASSERT(eir);
		value = nvram_get("et0phyaddr");
		if (value && !strcmp(value, "31")) {
			/* Enable internal UART */
			W_REG(&eir->corecontrol, CC_UE);
			/* Give USB its own interrupt */
			sb_setirq(sbh, 1, SB_USB, 0);
		} else {
			/* Disable internal UART */
			W_REG(&eir->corecontrol, 0);
			/* Give Ethernet its own interrupt */
			sb_setirq(sbh, 1, SB_ENET, 0);
			sb_setirq(sbh, 0, SB_USB, 0);
		}
		break;
	case BCM4310_DEVICE_ID:
		MTC0(C0_BROADCOM, 0, MFC0(C0_BROADCOM, 0) & ~(1 << 22));
		break;
	}
}

uint32
sb_mips_clock(void *sbh)
{
	extifregs_t *eir;
	chipcregs_t *cc;
	uint32 n, m;
	uint idx;
	uint32 pll_type, rate = 0;

	/* get index of the current core */
	idx = sb_coreidx(sbh);
	pll_type = PLL_TYPE1;

	/* switch to extif or chipc core */
	if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
		n = R_REG(&eir->clockcontrol_n);
		m = R_REG(&eir->clockcontrol_sb);
	} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
		pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
		n = R_REG(&cc->clockcontrol_n);
		if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4))
			m = R_REG(&cc->clockcontrol_mips);
		else if (pll_type == PLL_TYPE3) {
			rate = 200000000;
			goto out;
		} else
			m = R_REG(&cc->clockcontrol_sb);
	} else
		goto out;

	/* calculate rate */
	rate = sb_clock_rate(pll_type, n, m);

out:
	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return rate;
}

static void
icache_probe(int *size, int *lsize)
{
	uint32 config1;
	uint sets, ways;

	config1 = MFC0(C0_CONFIG, 1);

	/* Instruction Cache Size = Associativity * Line Size * Sets Per Way */
	if ((*lsize = ((config1 >> 19) & 7)))
		*lsize = 2 << *lsize;
	sets = 64 << ((config1 >> 22) & 7);
	ways = 1 + ((config1 >> 16) & 7);
	*size = *lsize * sets * ways;
}

#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)

static void
handler(void)
{
	/* Step 11 */
	__asm__ (
		".set\tmips32\n\t"
		"ssnop\n\t"
		"ssnop\n\t"
	/* Disable interrupts */
	/*	MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
		"mfc0 $15, $12\n\t"
		"and $15, $15, -31746\n\t"
		"mtc0 $15, $12\n\t"
		"eret\n\t"
		"nop\n\t"
		"nop\n\t"
		".set\tmips0"
	);
}

/* The following MUST come right after handler() */
static void
afterhandler(void)
{
}

/*
 * Set the MIPS, backplane and PCI clocks as closely as possible.
 */
bool
sb_mips_setclock(void *sbh, uint32 mipsclock, uint32 sbclock, uint32 pciclock)
{
	extifregs_t *eir = NULL;
	chipcregs_t *cc = NULL;
	mipsregs_t *mipsr = NULL;
	volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci;
	uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm, new_ratio;
	uint32 pll_type, sync_mode;
	uint idx, i;
	typedef struct {
		uint32 mipsclock;
		uint16 n;
		uint32 sb;
		uint32 pci33;
		uint32 pci25;
	} n3m_table_t;
	static n3m_table_t type1_table[] = {
		{  96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011 }, /*  96.000 32.000 24.000 */
		{ 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011 }, /* 100.000 33.333 25.000 */
		{ 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009 }, /* 104.000 31.200 24.960 */
		{ 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802 }, /* 108.000 32.400 24.923 */
		{ 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403 }, /* 112.000 32.000 24.889 */
		{ 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011 }, /* 115.200 32.000 24.000 */
		{ 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011 }, /* 120.000 30.000 24.000 */
		{ 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009 }, /* 124.800 31.200 24.960 */
		{ 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305 }, /* 128.000 32.000 24.000 */
		{ 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305 }, /* 132.000 33.000 24.750 */
		{ 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603 }, /* 136.000 32.640 24.727 */
		{ 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02 }, /* 140.000 30.000 24.706 */
		{ 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021 }, /* 144.000 30.857 24.686 */
		{ 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605 }, /* 150.857 33.000 24.000 */
		{ 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02 }, /* 152.000 32.571 24.000 */
		{ 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009 }, /* 156.000 31.200 24.960 */
		{ 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309 }, /* 160.000 32.000 24.000 */
		{ 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603 }, /* 163.200 32.640 24.727 */
		{ 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403 }, /* 168.000 32.000 24.889 */
		{ 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602 }, /* 176.000 33.000 24.000 */
	};
	typedef struct {
		uint32 mipsclock;
		uint32 sbclock;
		uint16 n;
		uint32 sb;
		uint32 pci33;
		uint32 m2;
		uint32 m3;
		uint32 ratio;
		uint32 ratio_parm;
	} n4m_table_t;

	static n4m_table_t type2_table[] = {
		{ 180000000,  80000000, 0x0403, 0x01010000, 0x01020300, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 180000000,  90000000, 0x0403, 0x01000100, 0x01020300, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
		{ 200000000, 100000000, 0x0303, 0x01000000, 0x01000600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
		{ 211200000, 105600000, 0x0902, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
		{ 220800000, 110400000, 0x1500, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
		{ 230400000, 115200000, 0x0604, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
		{ 234000000, 104000000, 0x0b01, 0x01010000, 0x01010700, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 240000000, 120000000,	0x0803,	0x01000200, 0x01020600,	0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
		{ 252000000, 126000000,	0x0504,	0x01000100, 0x01020500,	0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
		{ 264000000, 132000000, 0x0903, 0x01000200, 0x01020700, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
		{ 270000000, 120000000, 0x0703, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 276000000, 122666666, 0x1500, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 280000000, 140000000, 0x0503, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
		{ 288000000, 128000000, 0x0604, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 288000000, 144000000, 0x0404, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
		{ 300000000, 133333333, 0x0803, 0x01010000, 0x01020600, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
		{ 300000000, 150000000, 0x0803, 0x01000100, 0x01020600, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }
	};

	static n4m_table_t type4_table[] = {
		{ 192000000,  96000000, 0x0702,	0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
		{ 200000000, 100000000, 0x0009,	0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
		{ 216000000, 108000000, 0x0111, 0x11020005, 0x01030303, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
		{ 228000000, 101333333, 0x0e02, 0x11030003, 0x11210005, 0x11030305, 0x04000005, 0x94, 0x012a00a9 },
		{ 228000000, 114000000, 0x0e02, 0x11020005, 0x11210005, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
		{ 240000000, 120000000,	0x0109,	0x11030002, 0x01050203,	0x11030002, 0x04000003, 0x21, 0x0aaa0555 },
		{ 252000000, 126000000,	0x0203,	0x04000005, 0x11050005,	0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
		{ 264000000, 132000000, 0x0602, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
		{ 272000000, 116571428, 0x0c02, 0x04000021, 0x02000909, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
		{ 280000000, 120000000, 0x0209, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
		{ 288000000, 123428571, 0x0111, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
		{ 300000000, 120000000, 0x0009, 0x04000009, 0x01030203, 0x02000902, 0x04000002, 0x52, 0x02520129 }
	};
	uint icache_size, ic_lsize;
	ulong start, end, dst;
	bool ret = FALSE;

	/* get index of the current core */
	idx = sb_coreidx(sbh);

	/* switch to extif or chipc core */
	if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
		pll_type = PLL_TYPE1;
		clockcontrol_n = &eir->clockcontrol_n;
		clockcontrol_sb = &eir->clockcontrol_sb;
		clockcontrol_pci = &eir->clockcontrol_pci;
	} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
		pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
		clockcontrol_n = &cc->clockcontrol_n;
		clockcontrol_sb = &cc->clockcontrol_sb;
		clockcontrol_pci = &cc->clockcontrol_pci;
	} else
		goto done;

	/* Store the current clock register values */
	orig_n = R_REG(clockcontrol_n);
	orig_sb = R_REG(clockcontrol_sb);
	orig_pci = R_REG(clockcontrol_pci);

	if (pll_type == PLL_TYPE1) {
		/* Keep the current PCI clock if not specified */
		if (pciclock == 0) {
			pciclock = sb_clock_rate(pll_type, R_REG(clockcontrol_n), R_REG(clockcontrol_pci));
			pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
		}

		/* Search for the closest MIPS clock less than or equal to a preferred value */
		for (i = 0; i < ARRAYSIZE(type1_table); i++) {
			ASSERT(type1_table[i].mipsclock ==
			       sb_clock_rate(pll_type, type1_table[i].n, type1_table[i].sb));
			if (type1_table[i].mipsclock > mipsclock)
				break;
		}
		if (i == 0) {
			ret = FALSE;
			goto done;
		} else {
			ret = TRUE;
			i--;
		}
		ASSERT(type1_table[i].mipsclock <= mipsclock);

		/* No PLL change */
		if ((orig_n == type1_table[i].n) &&
		    (orig_sb == type1_table[i].sb) &&
		    (orig_pci == type1_table[i].pci33))
			goto done;

		/* Set the PLL controls */
		W_REG(clockcontrol_n, type1_table[i].n);
		W_REG(clockcontrol_sb, type1_table[i].sb);
		if (pciclock == 25000000)
			W_REG(clockcontrol_pci, type1_table[i].pci25);
		else
			W_REG(clockcontrol_pci, type1_table[i].pci33);

		/* Reset */
		sb_watchdog(sbh, 1);
		while (1);
	} else if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) {
		n4m_table_t *table = (pll_type == PLL_TYPE2) ? type2_table : type4_table;
		uint tabsz = (pll_type == PLL_TYPE2) ? ARRAYSIZE(type2_table) : ARRAYSIZE(type4_table);

		ASSERT(cc);

		/* Store the current clock register values */
		orig_m2 = R_REG(&cc->clockcontrol_m2);
		orig_mips = R_REG(&cc->clockcontrol_mips);
		orig_ratio_parm = 0;

		/* Look up current ratio */
		for (i = 0; i < tabsz; i++) {
			if ((orig_n == table[i].n) &&
			    (orig_sb == table[i].sb) &&
			    (orig_pci == table[i].pci33) &&
			    (orig_m2 == table[i].m2) &&
			    (orig_mips == table[i].m3)) {
				orig_ratio_parm = table[i].ratio_parm;
				break;
			}
		}

		/* Search for the closest MIPS clock greater or equal to a preferred value */
		for (i = 0; i < tabsz; i++) {
			ASSERT(table[i].mipsclock ==
			       sb_clock_rate(pll_type, table[i].n, table[i].m3));
			if ((mipsclock <= table[i].mipsclock) &&
			    ((sbclock == 0) || (sbclock <= table[i].sbclock)))
				break;
		}
		if (i == tabsz) {
			ret = FALSE;
			goto done;
		} else {
			ret = TRUE;
		}

		/* No PLL change */
		if ((orig_n == table[i].n) &&
		    (orig_sb == table[i].sb) &&
		    (orig_pci == table[i].pci33) &&
		    (orig_m2 == table[i].m2) &&
		    (orig_mips == table[i].m3))
			goto done;

		/* Set the PLL controls */
		W_REG(clockcontrol_n, table[i].n);
		W_REG(clockcontrol_sb, table[i].sb);
		W_REG(clockcontrol_pci, table[i].pci33);
		W_REG(&cc->clockcontrol_m2, table[i].m2);
		W_REG(&cc->clockcontrol_mips, table[i].m3);

		/* No ratio change */
		if (orig_ratio_parm == table[i].ratio_parm)
			goto end_fill;

		new_ratio = table[i].ratio_parm;

		icache_probe(&icache_size, &ic_lsize);

		/* Preload the code into the cache */
		start = ((ulong) &&start_fill) & ~(ic_lsize - 1);
		end = ((ulong) &&end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
		while (start < end) {
			cache_unroll(start, Fill_I);
			start += ic_lsize;
		}

		/* Copy the handler */
		start = (ulong) &handler;
		end = (ulong) &afterhandler;
		dst = KSEG1ADDR(0x180);
		for (i = 0; i < (end - start); i += 4)
			*((ulong *)(dst + i)) = *((ulong *)(start + i));
		
		/* Preload handler into the cache one line at a time */
		for (i = 0; i < (end - start); i += 4)
			cache_unroll(dst + i, Fill_I);

		/* Clear BEV bit */
		MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);

		/* Enable interrupts */
		MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));

		/* Enable MIPS timer interrupt */
		if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
		    !(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
			ASSERT(mipsr);
		W_REG(&mipsr->intmask, 1);

	start_fill:
		/* step 1, set clock ratios */
		MTC0(C0_BROADCOM, 3, new_ratio);
		MTC0(C0_BROADCOM, 1, 8);

		/* step 2: program timer intr */
		W_REG(&mipsr->timer, 100);
		(void) R_REG(&mipsr->timer);

		/* step 3, switch to async */
		sync_mode = MFC0(C0_BROADCOM, 4);
		MTC0(C0_BROADCOM, 4, 1 << 22);

		/* step 4, set cfg active */
		MTC0(C0_BROADCOM, 2, 0x9);


		/* steps 5 & 6 */ 
		__asm__ __volatile__ (
			".set\tmips3\n\t"
			"wait\n\t"
			".set\tmips0"
		);

		/* step 7, clear cfg_active */
		MTC0(C0_BROADCOM, 2, 0);
		
		/* Additional Step: set back to orig sync mode */
		MTC0(C0_BROADCOM, 4, sync_mode);

		/* step 8, fake soft reset */
		MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | 4);

	end_fill:
		/* step 9 set watchdog timer */
		sb_watchdog(sbh, 20);
		(void) R_REG(&cc->chipid);

		/* step 11 */
		__asm__ __volatile__ (
			".set\tmips3\n\t"
			"sync\n\t"
			"wait\n\t"
			".set\tmips0"
		);
		while (1);
	}

done:
	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return ret;
}


/* returns the ncdl value to be programmed into sdram_ncdl for calibration */
uint32
sb_memc_get_ncdl(void *sbh)
{
	sbmemcregs_t *memc;
	uint32 ret = 0;
	uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
	uint idx, rev;

	idx = sb_coreidx(sbh);

	memc = (sbmemcregs_t *)sb_setcore(sbh, SB_MEMC, 0);
	if (memc == 0)
		goto out;

	rev = sb_corerev(sbh);

	config = R_REG(&memc->config);
	wr = R_REG(&memc->wrncdlcor);
	rd = R_REG(&memc->rdncdlcor);
	misc = R_REG(&memc->miscdlyctl);
	dqsg = R_REG(&memc->dqsgatencdl);

	rd &= MEMC_RDNCDLCOR_RD_MASK;
	wr &= MEMC_WRNCDLCOR_WR_MASK; 
	dqsg &= MEMC_DQSGATENCDL_G_MASK;

	if (config & MEMC_CONFIG_DDR) {
		ret = (wr << 16) | (rd << 8) | dqsg;
	} else {
		if (rev > 0)
			cd = rd;
		else
			cd = (rd == MEMC_CD_THRESHOLD) ? rd : (wr + MEMC_CD_THRESHOLD);
		sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
		sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
		ret = (sm << 16) | (sd << 8) | cd;
	}

out:
	/* switch back to previous core */
	sb_setcoreidx(sbh, idx);

	return ret;
}