summaryrefslogtreecommitdiffstats
path: root/target/linux/ubicom32/files/drivers/mtd/devices
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ubicom32/files/drivers/mtd/devices')
-rw-r--r--target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c1017
-rw-r--r--target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c1066
-rw-r--r--target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c1188
3 files changed, 3271 insertions, 0 deletions
diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c b/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c
new file mode 100644
index 000000000..73938c882
--- /dev/null
+++ b/target/linux/ubicom32/files/drivers/mtd/devices/nand-spi-er.c
@@ -0,0 +1,1017 @@
+/*
+ * Micron SPI-ER NAND Flash Memory
+ *
+ * (C) Copyright 2009, Ubicom, Inc.
+ *
+ * This file is part of the Ubicom32 Linux Kernel Port.
+ *
+ * The Ubicom32 Linux Kernel Port is free software: you can redistribute
+ * it and/or modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * The Ubicom32 Linux Kernel Port is distributed in the hope that it
+ * will be useful, but WITHOUT ANY WARRANTY; without even the implied
+ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with the Ubicom32 Linux Kernel Port. If not,
+ * see <http://www.gnu.org/licenses/>.
+*/
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/mutex.h>
+#include <linux/err.h>
+
+#include <linux/spi/spi.h>
+#include <linux/spi/flash.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+
+#define NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6)
+
+#define NAND_SPI_ER_STATUS_P_FAIL (1 << 3)
+#define NAND_SPI_ER_STATUS_E_FAIL (1 << 2)
+#define NAND_SPI_ER_STATUS_OIP (1 << 0)
+
+#define NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF
+#define NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08
+
+struct nand_spi_er_device {
+ const char *name;
+
+ uint8_t id0;
+ uint8_t id1;
+
+ unsigned int blocks;
+ unsigned int pages_per_block;
+ unsigned int page_size;
+ unsigned int write_size;
+ unsigned int erase_size;
+};
+
+struct nand_spi_er {
+ char name[24];
+
+ const struct nand_spi_er_device *device;
+
+ struct mutex lock;
+ struct spi_device *spi;
+
+ struct mtd_info mtd;
+
+ unsigned int last_row; /* the last row we fetched */
+
+ /*
+ * Bad block table (MUST be last in strcuture)
+ */
+ unsigned long nbb;
+ unsigned long bbt[0];
+};
+
+const struct nand_spi_er_device nand_spi_er_devices[] = {
+ {
+ name: "MT29F1G01ZDC",
+ id0: 0x2C,
+ id1: 0x12,
+ blocks: 1024,
+ pages_per_block: 64,
+ page_size: 2048,
+ write_size: 512,
+ erase_size: 64 * 2048,
+ },
+ {
+ name: "MT29F1G01ZDC",
+ id0: 0x2C,
+ id1: 0x13,
+ blocks: 1024,
+ pages_per_block: 64,
+ page_size: 2048,
+ write_size: 512,
+ erase_size: 64 * 2048,
+ },
+};
+
+static int read_only = 0;
+module_param(read_only, int, 0);
+MODULE_PARM_DESC(read_only, "Leave device locked");
+
+/*
+ * nand_spi_er_get_feature
+ * Get Feature register
+ */
+static int nand_spi_er_get_feature(struct nand_spi_er *chip, int reg, uint8_t *data)
+{
+ uint8_t txbuf[2];
+ uint8_t rxbuf[1];
+ int res;
+
+ txbuf[0] = 0x0F;
+ txbuf[1] = reg;
+ res = spi_write_then_read(chip->spi, txbuf, 2, rxbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed get feature res=%d\n", chip->name, res);
+ return res;
+ }
+ *data = rxbuf[0];
+ return 0;
+}
+
+/*
+ * nand_spi_er_busywait
+ * Wait until the chip is not busy
+ */
+static int nand_spi_er_busywait(struct nand_spi_er *chip, uint8_t *data)
+{
+ int i;
+
+ for (i = 0; i < 100; i++) {
+ int res = nand_spi_er_get_feature(chip, 0xC0, data);
+ if (res) {
+ return res;
+ }
+ if (!(*data & NAND_SPI_ER_STATUS_OIP)) {
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * nand_spi_er_erase
+ * Erase a block, parameters must be block aligned
+ */
+static int nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct nand_spi_er *chip = mtd->priv;
+ struct spi_device *spi = chip->spi;
+ uint8_t txbuf[4];
+ int res;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len);
+
+ if ((instr->addr + instr->len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ if (instr->addr & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr);
+ return -EINVAL;
+ }
+
+ if (instr->len & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len);
+ return -EINVAL;
+ }
+
+ mutex_lock(&chip->lock);
+ chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID;
+
+ while (instr->len) {
+ uint32_t block = instr->addr >> 17;
+ uint32_t row = block << 6;
+ uint8_t stat;
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len);
+
+ /*
+ * Write enable
+ */
+ txbuf[0] = 0x06;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ /*
+ * Test for bad block
+ */
+ if (test_bit(block, chip->bbt)) {
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ res = -EBADMSG;
+ goto done;
+ }
+
+ /*
+ * Block erase
+ */
+ txbuf[0] = 0xD8;
+ txbuf[1] = 0x00;
+ txbuf[2] = row >> 8;
+ txbuf[3] = row & 0xFF;
+ res = spi_write(spi, txbuf, 4);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed block erase res=%d\n", chip->name, res);
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ goto done;
+ }
+
+ /*
+ * Wait
+ */
+ res = nand_spi_er_busywait(chip, &stat);
+ if (res || (stat & NAND_SPI_ER_STATUS_OIP)) {
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat);
+ if (res) {
+ goto done;
+ }
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ /*
+ * Check the status register
+ */
+ if (stat & NAND_SPI_ER_STATUS_E_FAIL) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat);
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ goto done;
+ }
+
+ /*
+ * Next
+ */
+ block++;
+ instr->len -= chip->device->erase_size;
+ instr->addr += chip->device->erase_size;
+ }
+
+ instr->state = MTD_ERASE_DONE;
+
+ mutex_unlock(&chip->lock);
+ return 0;
+
+done:
+ /*
+ * Write disable
+ */
+ txbuf[0] = 0x04;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res);
+ }
+
+ mutex_unlock(&chip->lock);
+
+ mtd_erase_callback(instr);
+ return 0;
+}
+
+/*
+ * nand_spi_er_read
+ *
+ * return -EUCLEAN: ecc error recovered
+ * return -EBADMSG: ecc error not recovered
+*/
+static int nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct nand_spi_er *chip = mtd->priv;
+ struct spi_device *spi = chip->spi;
+
+ uint32_t row;
+ uint32_t column;
+ int retval = 0;
+
+ *retlen = 0;
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf);
+
+ /*
+ * Zero length reads, nothing to do
+ */
+ if (len == 0) {
+ return 0;
+ }
+
+ /*
+ * Reject reads which go over the end of the flash
+ */
+ if ((from + len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ /*
+ * Get the row and column address to start at
+ */
+ row = from >> 11;
+ column = from & 0x7FF;
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row);
+
+ /*
+ * Read the data from the chip
+ */
+ mutex_lock(&chip->lock);
+ while (len) {
+ uint8_t stat;
+ uint8_t txbuf[4];
+ struct spi_message message;
+ struct spi_transfer x[2];
+ int res;
+ size_t toread;
+
+ /*
+ * Figure out how much to read
+ *
+ * If we are reading from the middle of a page then the most we
+ * can read is to the end of the page
+ */
+ toread = len;
+ if (toread > (chip->device->page_size - column)) {
+ toread = chip->device->page_size - column;
+ }
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, buf, toread, row, column, chip->last_row);
+
+ if (chip->last_row != row) {
+ /*
+ * Check if the block is bad
+ */
+ if (test_bit(NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) {
+ mutex_unlock(&chip->lock);
+ return -EBADMSG;
+ }
+
+ /*
+ * Load the appropriate page
+ */
+ txbuf[0] = 0x13;
+ txbuf[1] = 0x00;
+ txbuf[2] = row >> 8;
+ txbuf[3] = row & 0xFF;
+ res = spi_write(spi, txbuf, 4);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed page load res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ /*
+ * Wait
+ */
+ res = nand_spi_er_busywait(chip, &stat);
+ if (res || (stat & NAND_SPI_ER_STATUS_OIP)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat);
+ if (res) {
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ /*
+ * Chip is stuck?
+ */
+ mutex_unlock(&chip->lock);
+ return -EIO;
+ }
+
+ /*
+ * Check the ECC bits
+ */
+ stat >>= 4;
+ if (stat == 1) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row);
+ retval = -EUCLEAN;
+ }
+ if (stat == 2) {
+ DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row);
+ chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID;
+ mutex_unlock(&chip->lock);
+ return -EBADMSG;
+ }
+
+ }
+
+ chip->last_row = row;
+
+ /*
+ * Read out the data
+ */
+ spi_message_init(&message);
+ memset(x, 0, sizeof(x));
+
+ txbuf[0] = 0x03;
+ txbuf[1] = column >> 8;
+ txbuf[2] = column & 0xFF;
+ txbuf[3] = 0;
+ x[0].tx_buf = txbuf;
+ x[0].len = 4;
+ spi_message_add_tail(&x[0], &message);
+
+ x[1].rx_buf = buf;
+ x[1].len = toread;
+ spi_message_add_tail(&x[1], &message);
+
+ res = spi_sync(spi, &message);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed data read res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+ buf += toread;
+ len -= toread;
+ *retlen += toread;
+
+ /*
+ * For the next page, increment the row and always start at column 0
+ */
+ column = 0;
+ row++;
+ }
+
+ mutex_unlock(&chip->lock);
+ return retval;
+}
+
+/*
+ * nand_spi_er_write
+ */
+#define NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0)
+static int nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct nand_spi_er *chip = mtd->priv;
+ struct spi_device *spi = chip->spi;
+ const struct nand_spi_er_device *device = chip->device;
+ uint32_t row;
+ uint32_t col;
+ uint8_t txbuf[4];
+ int res;
+ size_t towrite;
+
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf);
+
+ *retlen = 0;
+
+ /*
+ * nothing to write
+ */
+ if (!len) {
+ return 0;
+ }
+
+ /*
+ * Reject writes which go over the end of the flash
+ */
+ if ((to + len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ /*
+ * Check to see if everything is page aligned
+ */
+ if (NOT_ALIGNED(to) || NOT_ALIGNED(len)) {
+ printk(KERN_NOTICE "nand_spi_er_write: Attempt to write non page aligned data\n");
+ return -EINVAL;
+ }
+
+ mutex_lock(&chip->lock);
+ chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID;
+
+ /*
+ * If the first write is a partial write then write at most the number of
+ * bytes to get us page aligned and then the remainder will be
+ * page aligned. The last bit may be a partial page as well.
+ */
+ col = to & (device->page_size - 1);
+ towrite = device->page_size - col;
+ if (towrite > len) {
+ towrite = len;
+ }
+
+ /*
+ * Write the data
+ */
+ row = to >> 11;
+ while (len) {
+ struct spi_message message;
+ struct spi_transfer x[2];
+ uint8_t stat;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len);
+
+ /*
+ * Write enable
+ */
+ txbuf[0] = 0x06;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ /*
+ * Write the data into the cache
+ */
+ spi_message_init(&message);
+ memset(x, 0, sizeof(x));
+ txbuf[0] = 0x02;
+ txbuf[1] = col >> 8;
+ txbuf[2] = col & 0xFF;
+ x[0].tx_buf = txbuf;
+ x[0].len = 3;
+ spi_message_add_tail(&x[0], &message);
+ x[1].tx_buf = buf;
+ x[1].len = towrite;
+ spi_message_add_tail(&x[1], &message);
+ res = spi_sync(spi, &message);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed cache write res=%d\n", chip->name, res);
+ goto done;
+ }
+
+ /*
+ * Program execute
+ */
+ txbuf[0] = 0x10;
+ txbuf[1] = 0x00;
+ txbuf[2] = row >> 8;
+ txbuf[3] = row & 0xFF;
+ res = spi_write(spi, txbuf, 4);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed prog execute res=%d\n", chip->name, res);
+ goto done;
+ }
+
+ /*
+ * Wait
+ */
+ res = nand_spi_er_busywait(chip, &stat);
+ if (res || (stat & NAND_SPI_ER_STATUS_OIP)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat);
+ if (res) {
+ goto done;
+ }
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ if (stat & (1 << 3)) {
+ res = -EBADMSG;
+ goto done;
+ }
+
+ row++;
+ buf += towrite;
+ len -= towrite;
+ *retlen += towrite;
+
+ /*
+ * At this point, we are always page aligned so start at column 0.
+ * Note we may not have a full page to write at the end, hence the
+ * check if towrite > len.
+ */
+ col = 0;
+ towrite = device->page_size;
+ if (towrite > len) {
+ towrite = len;
+ }
+ }
+
+ mutex_unlock(&chip->lock);
+ return res;
+
+done:
+ /*
+ * Write disable
+ */
+ txbuf[0] = 0x04;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res);
+ }
+
+ mutex_unlock(&chip->lock);
+
+ return res;
+}
+
+/*
+ * nand_spi_er_isbad
+ */
+static int nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_spi_er *chip = mtd->priv;
+ uint32_t block;
+
+ if (ofs & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
+ return -EINVAL;
+ }
+
+ block = ofs >> 17;
+
+ return test_bit(block, chip->bbt);
+}
+
+/*
+ * nand_spi_er_markbad
+ */
+static int nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_spi_er *chip = mtd->priv;
+ struct spi_device *spi = chip->spi;
+ uint32_t block;
+ uint32_t row;
+ uint8_t txbuf[7];
+ int res;
+ uint8_t stat;
+
+ if (ofs & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
+ return -EINVAL;
+ }
+
+ block = ofs >> 17;
+
+ /*
+ * If it's already marked bad, no need to mark it
+ */
+ if (test_bit(block, chip->bbt)) {
+ return 0;
+ }
+
+ /*
+ * Mark it in our cache
+ */
+ __set_bit(block, chip->bbt);
+
+ /*
+ * Write the user bad block mark. If it fails, then we really
+ * can't do anything about it.
+ */
+ mutex_lock(&chip->lock);
+ chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID;
+
+ /*
+ * Write enable
+ */
+ txbuf[0] = 0x06;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write enable res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ /*
+ * Write the mark
+ */
+ txbuf[0] = 0x84;
+ txbuf[1] = 0x08;
+ txbuf[2] = NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET;
+ txbuf[3] = 0xde;
+ txbuf[4] = 0xad;
+ txbuf[5] = 0xbe;
+ txbuf[6] = 0xef;
+ res = spi_write(spi, txbuf, 7);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write mark res=%d\n", chip->name, res);
+ goto done;
+ }
+
+ /*
+ * Program execute
+ */
+ row = ofs >> 11;
+ txbuf[0] = 0x10;
+ txbuf[1] = 0x00;
+ txbuf[2] = row >> 8;
+ txbuf[3] = row & 0xFF;
+ res = spi_write(spi, txbuf, 4);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed program execute res=%d\n", chip->name, res);
+ goto done;
+ }
+
+ /*
+ * Wait
+ */
+ res = nand_spi_er_busywait(chip, &stat);
+ if (res || (stat & NAND_SPI_ER_STATUS_OIP)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat);
+ if (res) {
+ goto done;
+ }
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ if (stat & (1 << 3)) {
+ res = -EBADMSG;
+ }
+
+done:
+ /*
+ * Write disable
+ */
+ txbuf[0] = 0x04;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed write disable res=%d\n", chip->name, res);
+ }
+
+ mutex_unlock(&chip->lock);
+
+ return res;
+}
+
+/*
+ * nand_spi_er_read_bbt
+ */
+static int nand_spi_er_read_bbt(struct nand_spi_er *chip)
+{
+ int j;
+ for (j = 0; j < chip->device->blocks; j++) {
+ uint8_t txbuf[4];
+ uint8_t rxbuf[16];
+ uint32_t bbmark;
+ int res;
+ unsigned short row = j << 6;
+ uint8_t stat;
+
+ /*
+ * Read Page
+ */
+ txbuf[0] = 0x13;
+ txbuf[1] = 0x00;
+ txbuf[2] = row >> 8;
+ txbuf[3] = row & 0xFF;
+ res = spi_write(chip->spi, txbuf, 4);
+ if (res) {
+ return res;
+ }
+
+ /*
+ * Wait
+ */
+ res = nand_spi_er_busywait(chip, &stat);
+ if (res || (stat & NAND_SPI_ER_STATUS_OIP)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive res=%d stat=%02x\n", chip->name, res, stat);
+ if (res) {
+ return res;
+ }
+
+ /*
+ * Chip is stuck?
+ */
+ return -EIO;
+ }
+
+ /*
+ * Check factory bad block mark
+ */
+ txbuf[0] = 0x03;
+ txbuf[1] = 0x08;
+ txbuf[2] = 0x00;
+ txbuf[3] = 0x00;
+ res = spi_write_then_read(chip->spi, txbuf, 4, rxbuf, 16);
+ if (res) {
+ return res;
+ }
+ if (rxbuf[0] != 0xFF) {
+ chip->nbb++;
+ __set_bit(j, chip->bbt);
+ continue;
+ }
+
+ memcpy(&bbmark, &rxbuf[8], 4);
+ if (bbmark == 0xdeadbeef) {
+ chip->nbb++;
+ __set_bit(j, chip->bbt);
+ }
+ }
+
+#if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE)
+ printk("%s: Bad Block Table:", chip->name);
+ for (j = 0; j < chip->device->blocks; j++) {
+ if ((j % 64) == 0) {
+ printk("\n%s: block %03x: ", chip->name, j);
+ }
+ printk("%c", test_bit(j, chip->bbt) ? 'X' : '.');
+ }
+ printk("\n%s: Bad Block Numbers: ", chip->name);
+ for (j = 0; j < chip->device->blocks; j++) {
+ if (test_bit(j, chip->bbt)) {
+ printk("%x ", j);
+ }
+ }
+ printk("\n");
+#endif
+
+ return 0;
+}
+
+#ifndef MODULE
+/*
+ * Called at boot time:
+ *
+ * nand_spi_er=read_only
+ * if read_only specified then do not unlock device
+ */
+static int __init nand_spi_er_setup(char *str)
+{
+ if (str && (strncasecmp(str, "read_only", 9) == 0)) {
+ read_only = 1;
+ }
+ return 0;
+}
+
+__setup("nand_spi_er=", nand_spi_er_setup);
+#endif
+
+/*
+ * nand_spi_er_probe
+ * Detect and initialize nand_spi_er device.
+ */
+static int __devinit nand_spi_er_probe(struct spi_device *spi)
+{
+ uint8_t txbuf[3];
+ uint8_t rxbuf[2];
+ int i;
+ int res;
+ size_t bbt_bytes;
+ struct nand_spi_er *chip;
+ const struct nand_spi_er_device *device;
+
+ res = spi_setup(spi);
+ if (res) {
+ return res;
+ }
+
+ /*
+ * Reset
+ */
+ for (i = 0; i < 2; i++) {
+ txbuf[0] = 0xFF;
+ res = spi_write(spi, txbuf, 1);
+ if (res) {
+ return res;
+ }
+ udelay(250);
+ }
+ udelay(1000);
+
+ /*
+ * Read ID
+ */
+ txbuf[0] = 0x9F;
+ txbuf[1] = 0x00;
+ res = spi_write_then_read(spi, txbuf, 2, rxbuf, 2);
+ if (res) {
+ return res;
+ }
+
+ device = nand_spi_er_devices;
+ for (i = 0; i < ARRAY_SIZE(nand_spi_er_devices); i++) {
+ if ((device->id0 == rxbuf[0]) && (device->id1 == rxbuf[1])) {
+ break;
+ }
+ device++;
+ }
+ if (i == ARRAY_SIZE(nand_spi_er_devices)) {
+ return -ENODEV;
+ }
+
+ /*
+ * Initialize our chip structure
+ */
+ bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE);
+ chip = kzalloc(sizeof(struct nand_spi_er) + bbt_bytes, GFP_KERNEL);
+ if (!chip) {
+ return -ENOMEM;
+ }
+ snprintf(chip->name, sizeof(chip->name), "%s.%d.%d", device->name, spi->master->bus_num, spi->chip_select);
+
+ chip->spi = spi;
+ chip->device = device;
+ chip->last_row = NAND_SPI_ER_LAST_ROW_INVALID;
+
+ mutex_init(&chip->lock);
+
+ chip->mtd.type = MTD_NANDFLASH;
+ chip->mtd.flags = MTD_WRITEABLE;
+
+ /*
+ * #blocks * block size * n blocks
+ */
+ chip->mtd.size = device->blocks * device->pages_per_block * device->page_size;
+ chip->mtd.erasesize = device->erase_size;
+
+ /*
+ * 1 page, optionally we can support partial write (512)
+ */
+ chip->mtd.writesize = device->write_size;
+ chip->mtd.name = device->name;
+ chip->mtd.erase = nand_spi_er_erase;
+ chip->mtd.read = nand_spi_er_read;
+ chip->mtd.write = nand_spi_er_write;
+ chip->mtd.block_isbad = nand_spi_er_isbad;
+ chip->mtd.block_markbad = nand_spi_er_markbad;
+ chip->mtd.priv = chip;
+
+ /*
+ * Cache the bad block table
+ */
+ res = nand_spi_er_read_bbt(chip);
+ if (res) {
+ kfree(chip);
+ return res;
+ }
+
+ /*
+ * Un/lock the chip
+ */
+ txbuf[0] = 0x1F;
+ txbuf[1] = 0xA0;
+ if (read_only) {
+ txbuf[2] = 0x38;
+ } else {
+ txbuf[2] = 0x00;
+ }
+ res = spi_write(spi, txbuf, 3);
+ if (res) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: failed lock operation res=%d\n", chip->name, res);
+ mutex_unlock(&chip->lock);
+ return res;
+ }
+
+ spi_set_drvdata(spi, chip);
+
+ printk(KERN_INFO "%s: added device %s size: %u KBytes %u bad blocks %s\n", spi->dev.bus_id, chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : "");
+ return add_mtd_device(&chip->mtd);
+}
+
+/*
+ * nand_spi_er_remove
+ */
+static int __devexit nand_spi_er_remove(struct spi_device *spi)
+{
+ struct nand_spi_er *chip = spi_get_drvdata(spi);
+ int status = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", spi->dev.bus_id);
+ status = del_mtd_device(&chip->mtd);
+ if (status == 0)
+ kfree(chip);
+ return status;
+}
+
+static struct spi_driver nand_spi_er_driver = {
+ .driver = {
+ .name = "nand-spi-er",
+ .bus = &spi_bus_type,
+ .owner = THIS_MODULE,
+ },
+
+ .probe = nand_spi_er_probe,
+ .remove = __devexit_p(nand_spi_er_remove),
+
+ /* FIXME: investigate suspend and resume... */
+};
+
+/*
+ * nand_spi_er_init
+ */
+static int __init nand_spi_er_init(void)
+{
+ return spi_register_driver(&nand_spi_er_driver);
+}
+module_init(nand_spi_er_init);
+
+/*
+ * nand_spi_er_exit
+ */
+static void __exit nand_spi_er_exit(void)
+{
+ spi_unregister_driver(&nand_spi_er_driver);
+}
+module_exit(nand_spi_er_exit);
+
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Patrick Tjin");
+MODULE_DESCRIPTION("MTD nand_spi_er driver");
diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c
new file mode 100644
index 000000000..405491cc4
--- /dev/null
+++ b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c
@@ -0,0 +1,1066 @@
+/*
+ * drivers/mtd/devices/ubi32-m25p80.c
+ * NOR flash driver, Ubicom processor internal SPI flash interface.
+ *
+ * This code instantiates the serial flash that contains the
+ * original bootcode. The serial flash start at address 0x60000000
+ * in both Ubicom32V3 and Ubicom32V4 ISAs.
+ *
+ * This piece of flash is made to appear as a Memory Technology
+ * Device (MTD) with this driver to allow Read/Write/Erase operations.
+ *
+ * (C) Copyright 2009, Ubicom, Inc.
+ *
+ * This file is part of the Ubicom32 Linux Kernel Port.
+ *
+ * The Ubicom32 Linux Kernel Port is free software: you can redistribute
+ * it and/or modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * The Ubicom32 Linux Kernel Port is distributed in the hope that it
+ * will be useful, but WITHOUT ANY WARRANTY; without even the implied
+ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with the Ubicom32 Linux Kernel Port. If not,
+ * see <http://www.gnu.org/licenses/>.
+ *
+ * Ubicom32 implementation derived from (with many thanks):
+ * arch/m68knommu
+ * arch/blackfin
+ * arch/parisc
+ */
+#include <linux/types.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/physmap.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/flash.h>
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/mutex.h>
+
+#include <asm/ip5000.h>
+#include <asm/devtree.h>
+
+#define UBICOM32_FLASH_BASE 0x60000000
+#define UBICOM32_FLASH_MAX_SIZE 0x01000000
+#define UBICOM32_FLASH_START 0x00000000
+#define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom
+ * .protect section. */
+
+static struct mtd_partition ubicom32_flash_partitions[] = {
+ {
+ .name = "Bootloader", /* Protected Section
+ * Partition */
+ .size = 0x10000,
+ .offset = UBICOM32_FLASH_START,
+// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
+ },
+ {
+ .name = "Kernel", /* Kernel Partition. */
+ .size = 0, /* this will be set up during
+ * probe stage. At that time we
+ * will know end of linux image
+ * in flash. */
+ .offset = MTDPART_OFS_APPEND, /* Starts right after Protected
+ * section. */
+// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
+ },
+ {
+ .name = "Rest", /* Rest of the flash. */
+ .size = 0x200000, /* Use up what remains in the
+ * flash. */
+ .offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected
+ * section. */
+ }
+};
+
+static struct flash_platform_data ubicom32_flash_data = {
+ .name = "ubicom32_boot_flash",
+ .parts = ubicom32_flash_partitions,
+ .nr_parts = ARRAY_SIZE(ubicom32_flash_partitions),
+};
+
+static struct resource ubicom32_flash_resource[] = {
+ {
+ .start = UBICOM32_FLASH_BASE,
+ .end = UBICOM32_FLASH_BASE +
+ UBICOM32_FLASH_MAX_SIZE - 1,
+ .flags = IORESOURCE_MEM,
+ },
+};
+
+static struct platform_device ubicom32_flash_device = {
+ .name = "ubicom32flashdriver",
+ .id = 0, /* Bus number */
+ .num_resources = ARRAY_SIZE(ubicom32_flash_resource),
+ .resource = ubicom32_flash_resource,
+ .dev = {
+ .platform_data = &ubicom32_flash_data,
+ },
+};
+
+static struct platform_device *ubicom32_flash_devices[] = {
+ &ubicom32_flash_device,
+};
+
+static int __init ubicom32_flash_init(void)
+{
+ printk(KERN_INFO "%s(): registering device resources\n",
+ __FUNCTION__);
+ platform_add_devices(ubicom32_flash_devices,
+ ARRAY_SIZE(ubicom32_flash_devices));
+ return 0;
+}
+
+arch_initcall(ubicom32_flash_init);
+
+/*
+ * MTD SPI driver for ST M25Pxx (and similar) serial flash chips through
+ * Ubicom32 SPI controller.
+ *
+ * Author: Mike Lavender, mike@steroidmicros.com
+ *
+ * Copyright (c) 2005, Intec Automation Inc.
+ *
+ * Some parts are based on lart.c by Abraham Van Der Merwe
+ *
+ * Cleaned up and generalized based on mtd_dataflash.c
+ *
+ * This code is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define FLASH_PAGESIZE 256
+
+/* Flash opcodes. */
+#define OPCODE_WREN 0x06 /* Write enable */
+#define OPCODE_RDSR 0x05 /* Read status register */
+#define OPCODE_READ 0x03 /* Read data bytes (low frequency) */
+#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
+#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
+#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
+#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
+#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
+#define OPCODE_RDID 0x9f /* Read JEDEC ID */
+
+/* Status Register bits. */
+#define SR_WIP 1 /* Write in progress */
+#define SR_WEL 2 /* Write enable latch */
+/* meaning of other SR_* bits may differ between vendors */
+#define SR_BP0 4 /* Block protect 0 */
+#define SR_BP1 8 /* Block protect 1 */
+#define SR_BP2 0x10 /* Block protect 2 */
+#define SR_SRWD 0x80 /* SR write protect */
+
+/* Define max times to check status register before we give up. */
+#define MAX_READY_WAIT_COUNT 100000
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+#define mtd_has_partitions() (1)
+#else
+#define mtd_has_partitions() (0)
+#endif
+
+/*
+ * Ubicom32 FLASH Command Set
+ */
+#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */
+#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */
+#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */
+
+#define ALIGN_DOWN(v, a) ((v) & ~((a) - 1))
+#define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1))
+
+#define FLASH_COMMAND_KICK_OFF(io) \
+ asm volatile( \
+ " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
+ " jmpt.t .+4 \n\t" \
+ " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \
+ : \
+ : "a" (io) \
+ : "memory", "cc" \
+ );
+
+#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \
+ asm volatile( \
+ " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
+ " jmpeq.f .-4 \n\t" \
+ : \
+ : "a" (io) \
+ : "memory", "cc" \
+ );
+
+#define FLASH_COMMAND_EXEC(io) \
+ FLASH_COMMAND_KICK_OFF(io) \
+ FLASH_COMMAND_WAIT_FOR_COMPLETION(io)
+
+
+#define OSC1_FREQ 12000000
+#define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000)
+
+/*
+ * We will have to eventually replace this null definition with the real thing.
+ */
+#define WATCHDOG_RESET()
+
+#define EXTFLASH_WRITE_FIFO_SIZE 32
+#define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to
+ * FIFO capacity, so
+ * the thread can be
+ * suspended. */
+
+#define JFFS2_FILESYSTEM_SIZE 0x100000
+
+/****************************************************************************/
+
+struct m25p {
+ struct platform_device *plt_dev;
+ struct mutex lock;
+ struct mtd_info mtd;
+ unsigned partitioned:1;
+ u8 erase_opcode;
+ u8 command[4];
+};
+
+static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
+{
+ return container_of(mtd, struct m25p, mtd);
+}
+
+/****************************************************************************/
+
+/*
+ * Internal helper functions
+ */
+
+/*
+ * Read the status register, returning its value in the location
+ * Return the status register value.
+ * Returns negative if error occurred.
+ */
+static int read_sr(struct m25p *flash)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
+ IO_XFL_CTL1_FC_DATA(1);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
+ FLASH_COMMAND_EXEC(io);
+
+ return io->status1 & 0xff;
+}
+
+/*
+ * mem_flash_io_read_u32()
+ */
+static u32 mem_flash_io_read_u32(u32 addr)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
+ IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) |
+ IO_XFL_CTL2_FC_ADDR(addr);
+ FLASH_COMMAND_EXEC(io);
+ return io->status1;
+}
+
+/*
+ * mem_flash_read_u8()
+ */
+static u8 mem_flash_read_u8(u32 addr)
+{
+ u32 tmp_addr = ALIGN_DOWN(addr, 4);
+ u32 tmp_data = mem_flash_io_read_u32(tmp_addr);
+ u8 *ptr = (u8 *)&tmp_data;
+ return ptr[addr & 0x3];
+}
+
+/*
+ * mem_flash_read()
+ * No need to lock as read is implemented with ireads (same as normal flash
+ * execution).
+ */
+static void mem_flash_read(u32 addr, void *dst, size_t length)
+{
+ /*
+ * Range check
+ */
+ /*
+ * Fix source alignment.
+ */
+ while (addr & 0x03) {
+ if (length == 0) {
+ return;
+ }
+ *((u8 *)dst) = mem_flash_read_u8(addr++);
+ dst++;
+ length--;
+ }
+
+ while (length >= 4) {
+ u32 tmp_data = mem_flash_io_read_u32(addr);
+ addr += 4;
+ length -= 4;
+
+ /*
+ * Send the data to the destination.
+ */
+ memcpy((void *)dst, (void *)&tmp_data, 4);
+ dst += 4;
+ }
+
+ while (length--) {
+ *((u8 *)dst) = mem_flash_read_u8(addr++);
+ dst++;
+ }
+}
+
+/*
+ * mem_flash_wait_until_complete()
+ */
+static void mem_flash_wait_until_complete(void)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+
+ do {
+ /*
+ * Put a delay here to deal with flash programming problem.
+ */
+ u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
+ while (UBICOM32_IO_TIMER->mptval < mptval)
+ ;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
+ IO_XFL_CTL1_FC_DATA(1);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
+ FLASH_COMMAND_EXEC(io);
+ } while (io->status1 & SR_WIP);
+}
+
+/*
+ * mem_flash_write_next()
+ */
+static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+ u32 data_start = addr;
+ u32 data_end = addr + length;
+ size_t count;
+ u32 i, j;
+
+ /*
+ * Top limit address.
+ */
+ u32 block_start = ALIGN_DOWN(data_start, 4);
+ u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE;
+
+ union {
+ u8 byte[EXTFLASH_WRITE_BLOCK_SIZE];
+ u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4];
+ } write_buf;
+
+ u32 *flash_addr = (u32 *)block_start;
+
+ /*
+ * The write block must be limited by FLASH internal buffer.
+ */
+ u32 block_end_align = ALIGN_DOWN(block_end, 256);
+ bool write_needed;
+
+ block_end = (block_end_align > block_start)
+ ? block_end_align : block_end;
+ data_end = (data_end <= block_end) ? data_end : block_end;
+ block_end = ALIGN_UP(data_end, 4);
+ count = data_end - data_start;
+
+ /*
+ * Transfer data to a buffer.
+ */
+ for (i = 0; i < (block_end - block_start) / 4; i++) {
+ /*
+ * The FLASH read can hold D-cache for a long time.
+ * Use I/O operation to read FLASH to avoid starving other
+ * threads, especially HRT. (Do this for application only)
+ */
+ write_buf.word[i] = mem_flash_io_read_u32(
+ (u32)(&flash_addr[i]));
+ }
+
+ write_needed = false;
+ for (i = 0, j = (data_start - block_start);
+ i < (data_end - data_start); i++, j++) {
+ write_needed = write_needed || (write_buf.byte[j] != buf[i]);
+ write_buf.byte[j] &= buf[i];
+ }
+
+
+ /*
+ * If the data in FLASH is identical to what to be written. Then skip
+ * it.
+ */
+ if (write_needed) {
+ /*
+ * Write to flash.
+ */
+ void *tmp __attribute__((unused));
+ s32 extra_words;
+
+ asm volatile(
+ " move.4 %0, %2 \n\t"
+ " bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
+ " pipe_flush 0 \n\t"
+ " .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
+ " .endr \n\t"
+ : "=&a" (tmp)
+ : "a" (io), "r" (&write_buf.word[0])
+ : "memory", "cc"
+ );
+
+ /* Lock FLASH for write access. */
+ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
+
+ /* Command: WREN */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
+ FLASH_COMMAND_EXEC(io);
+
+ /* Command: BYTE PROGRAM */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) |
+ IO_XFL_CTL1_FC_DATA(block_end - block_start) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) |
+ IO_XFL_CTL2_FC_ADDR(block_start);
+ FLASH_COMMAND_KICK_OFF(io);
+
+ extra_words = (s32)(block_end - block_start -
+ EXTFLASH_WRITE_FIFO_SIZE) / 4;
+ if (extra_words > 0) {
+ asm volatile(
+ " move.4 %0, %3 \n\t"
+ "1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t"
+ " jmpgt.s.t 1b \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
+ " add.4 %2, #-1, %2 \n\t"
+ " jmpgt.t 1b \n\t"
+ : "=&a" (tmp)
+ : "a" (io), "d" (extra_words),
+ "r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4])
+ : "memory", "cc"
+ );
+ }
+ FLASH_COMMAND_WAIT_FOR_COMPLETION(io);
+
+ mem_flash_wait_until_complete();
+
+
+ /* Unlock FLASH for cache access. */
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+ }
+
+ /*
+ * Complete.
+ */
+ return count;
+}
+
+/*
+ * mem_flash_write()
+ */
+static void mem_flash_write(u32 addr, const void *src, size_t length)
+{
+ /*
+ * Write data
+ */
+ u8_t *ptr = (u8_t *)src;
+ while (length) {
+ size_t count = mem_flash_write_next(addr, ptr, length);
+ addr += count;
+ ptr += count;
+ length -= count;
+ }
+}
+
+/*
+ * Service routine to read status register until ready, or timeout occurs.
+ * Returns non-zero if error.
+ */
+static int wait_till_ready(struct m25p *flash)
+{
+ int count;
+ int sr;
+
+ /* one chip guarantees max 5 msec wait here after page writes,
+ * but potentially three seconds (!) after page erase.
+ */
+ for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
+ u32 mptval;
+ sr = read_sr(flash);
+ if (sr < 0)
+ break;
+ else if (!(sr & SR_WIP))
+ return 0;
+
+ /*
+ * Put a 10us delay here to deal with flash programming problem.
+ */
+ mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
+ while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) {
+ WATCHDOG_RESET();
+ }
+ /* REVISIT sometimes sleeping would be best */
+ }
+
+ return 1;
+}
+
+/*
+ * mem_flash_erase_page()
+ */
+static void mem_flash_erase_page(u32 addr)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+
+ /* Lock FLASH for write access. */
+ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
+
+ /* Command: WREN */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
+ FLASH_COMMAND_EXEC(io);
+
+ /* Command: ERASE */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) |
+ IO_XFL_CTL2_FC_ADDR(addr);
+ FLASH_COMMAND_EXEC(io);
+
+ mem_flash_wait_until_complete();
+
+ /* Unlock FLASH for cache access. */
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+}
+
+/*
+ * mem_flash_erase()
+ */
+static u32 mem_flash_erase(u32 addr, u32 length)
+{
+ /*
+ * Calculate the endaddress to be the first address of the page
+ * just beyond this erase section of pages.
+ */
+ u32 endaddr = addr + length;
+
+ /*
+ * Erase.
+ */
+ while (addr < endaddr) {
+ u32 test_addr = addr;
+ mem_flash_erase_page(addr);
+
+ /*
+ * Test how much was erased as actual flash page at this address
+ * may be smaller than the expected page size.
+ */
+ while (test_addr < endaddr) {
+ /*
+ * The FLASH read can hold D-cache for a long time. Use
+ * I/O operation to read FLASH to avoid starving other
+ * threads, especially HRT. (Do this for application
+ * only)
+ */
+ if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) {
+ break;
+ }
+ test_addr += 4;
+ }
+ if (test_addr == addr) {
+ printk("erase failed at address 0x%x, skipping",
+ test_addr);
+ test_addr += 4;
+ return 1;
+ }
+ addr = test_addr;
+ }
+ return 0;
+}
+
+
+/****************************************************************************/
+
+/*
+ * MTD implementation
+ */
+
+/*
+ * Erase an address range on the flash chip. The address range may extend
+ * one or more erase sectors. Return an error is there is a problem erasing.
+ */
+static int ubicom32_flash_driver_erase(struct mtd_info *mtd,
+ struct erase_info *instr)
+{
+ struct m25p *flash = mtd_to_m25p(mtd);
+ u32 addr, len;
+
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n",
+ dev_name(&flash->plt_dev->dev), __FUNCTION__, "at",
+ (u32)instr->addr, instr->len);
+
+ /* sanity checks */
+ if (instr->addr + instr->len > flash->mtd.size)
+ return -EINVAL;
+ if ((instr->addr % mtd->erasesize) != 0
+ || (instr->len % mtd->erasesize) != 0) {
+ return -EINVAL;
+ }
+
+ addr = instr->addr + UBICOM32_FLASH_BASE;
+ len = instr->len;
+
+ mutex_lock(&flash->lock);
+
+ /* REVISIT in some cases we could speed up erasing large regions
+ * by using OPCODE_SE instead of OPCODE_BE_4K
+ */
+
+ /* now erase those sectors */
+ if (mem_flash_erase(addr, len)) {
+ instr->state = MTD_ERASE_FAILED;
+ mutex_unlock(&flash->lock);
+ return -EIO;
+ }
+
+ mutex_unlock(&flash->lock);
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+ return 0;
+}
+
+/*
+ * Read an address range from the flash chip. The address range
+ * may be any size provided it is within the physical boundaries.
+ */
+static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ struct m25p *flash = mtd_to_m25p(mtd);
+ u32 base_addr = UBICOM32_FLASH_BASE + from;
+
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
+ dev_name(&flash->plt_dev->dev), __FUNCTION__, "from",
+ (u32)from, len);
+
+ /* sanity checks */
+ if (!len)
+ return 0;
+
+ if (from + len > flash->mtd.size)
+ return -EINVAL;
+
+ /* Byte count starts at zero. */
+ if (retlen)
+ *retlen = 0;
+
+ mutex_lock(&flash->lock);
+
+ /* Wait till previous write/erase is done. */
+ if (wait_till_ready(flash)) {
+ /* REVISIT status return?? */
+ mutex_unlock(&flash->lock);
+ return 1;
+ }
+
+ mem_flash_read(base_addr, (void *)buf, len);
+
+ if (retlen)
+ *retlen = len;
+
+ mutex_unlock(&flash->lock);
+
+ return 0;
+}
+
+/*
+ * Write an address range to the flash chip. Data must be written in
+ * FLASH_PAGESIZE chunks. The address range may be any size provided
+ * it is within the physical boundaries.
+ */
+static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to,
+ size_t len, size_t *retlen,
+ const u_char *buf)
+{
+ struct m25p *flash = mtd_to_m25p(mtd);
+ u32 base_addr = UBICOM32_FLASH_BASE + to;
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
+ dev_name(&flash->plt_dev->dev), __FUNCTION__, "to",
+ (u32)to, len);
+
+ if (retlen)
+ *retlen = 0;
+
+ /* sanity checks */
+ if (!len)
+ return 0;
+
+ if (to + len > flash->mtd.size)
+ return -EINVAL;
+
+ mutex_lock(&flash->lock);
+
+ mem_flash_write(base_addr, (void *) buf, len);
+
+ /* Wait until finished previous write command. */
+ if (wait_till_ready(flash)) {
+ mutex_unlock(&flash->lock);
+ return 1;
+ }
+
+ if (retlen)
+ *retlen = len;
+
+ mutex_unlock(&flash->lock);
+ return 0;
+}
+
+
+/****************************************************************************/
+
+/*
+ * SPI device driver setup and teardown
+ */
+
+struct flash_info {
+ char *name;
+
+ /* JEDEC id zero means "no ID" (most older chips); otherwise it has
+ * a high byte of zero plus three data bytes: the manufacturer id,
+ * then a two byte device id.
+ */
+ u32 jedec_id;
+
+ /* The size listed here is what works with OPCODE_SE, which isn't
+ * necessarily called a "sector" by the vendor.
+ */
+ unsigned sector_size;
+ u16 n_sectors;
+
+ u16 flags;
+#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
+};
+
+
+/* NOTE: double check command sets and memory organization when you add
+ * more flash chips. This current list focusses on newer chips, which
+ * have been converging on command sets which including JEDEC ID.
+ */
+static struct flash_info __devinitdata m25p_data[] = {
+
+ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
+ { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
+ { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
+
+ { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
+
+ { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
+ { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
+ { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
+ { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
+
+ /* Spansion -- single (large) sector size only, at least
+ * for the chips listed here (without boot sectors).
+ */
+ { "s25sl004a", 0x010212, 64 * 1024, 8, },
+ { "s25sl008a", 0x010213, 64 * 1024, 16, },
+ { "s25sl016a", 0x010214, 64 * 1024, 32, },
+ { "s25sl032a", 0x010215, 64 * 1024, 64, },
+ { "s25sl064a", 0x010216, 64 * 1024, 128, },
+
+ /* SST -- large erase sizes are "overlays", "sectors" are 4K */
+ { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
+ { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
+ { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
+ { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
+
+ /* ST Microelectronics -- newer production may have feature updates */
+ { "m25p05", 0x202010, 32 * 1024, 2, },
+ { "m25p10", 0x202011, 32 * 1024, 4, },
+ { "m25p20", 0x202012, 64 * 1024, 4, },
+ { "m25p40", 0x202013, 64 * 1024, 8, },
+ { "m25p80", 0, 64 * 1024, 16, },
+ { "m25p16", 0x202015, 64 * 1024, 32, },
+ { "m25p32", 0x202016, 64 * 1024, 64, },
+ { "m25p64", 0x202017, 64 * 1024, 128, },
+ { "m25p128", 0x202018, 256 * 1024, 64, },
+
+ { "m45pe80", 0x204014, 64 * 1024, 16, },
+ { "m45pe16", 0x204015, 64 * 1024, 32, },
+
+ { "m25pe80", 0x208014, 64 * 1024, 16, },
+ { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
+
+ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
+ { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
+ { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
+ { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
+ { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
+ { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
+ { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
+ { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
+
+ /* Macronix -- mx25lxxx */
+ { "mx25l32", 0xc22016, 64 * 1024, 64, },
+ { "mx25l64", 0xc22017, 64 * 1024, 128, },
+ { "mx25l128", 0xc22018, 64 * 1024, 256, },
+
+};
+
+struct flash_info *__devinit jedec_probe(struct platform_device *spi)
+{
+ int tmp;
+ u32 jedec;
+ struct flash_info *info;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
+
+ /*
+ * Setup and run RDID command on the flash.
+ */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
+ IO_XFL_CTL1_FC_DATA(3);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID);
+ FLASH_COMMAND_EXEC(io);
+
+ jedec = io->status1 & 0x00ffffff;
+
+ for (tmp = 0, info = m25p_data;
+ tmp < ARRAY_SIZE(m25p_data);
+ tmp++, info++) {
+ if (info->jedec_id == jedec)
+ return info;
+ }
+ dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
+ return NULL;
+}
+
+
+/*
+ * board specific setup should have ensured the SPI clock used here
+ * matches what the READ command supports, at least until this driver
+ * understands FAST_READ (for clocks over 25 MHz).
+ */
+static int __devinit ubicom32_flash_probe(struct platform_device *spi)
+{
+ struct flash_platform_data *data;
+ struct m25p *flash;
+ struct flash_info *info;
+ unsigned i;
+
+ /* Platform data helps sort out which chip type we have, as
+ * well as how this board partitions it. If we don't have
+ * a chip ID, try the JEDEC id commands; they'll work for most
+ * newer chips, even if we don't recognize the particular chip.
+ */
+ data = spi->dev.platform_data;
+ if (data && data->type) {
+ for (i = 0, info = m25p_data;
+ i < ARRAY_SIZE(m25p_data);
+ i++, info++) {
+ if (strcmp(data->type, info->name) == 0)
+ break;
+ }
+
+ /* unrecognized chip? */
+ if (i == ARRAY_SIZE(m25p_data)) {
+ DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
+ dev_name(&spi->dev), data->type);
+ info = NULL;
+
+ /* recognized; is that chip really what's there? */
+ } else if (info->jedec_id) {
+ struct flash_info *chip = jedec_probe(spi);
+
+ if (!chip || chip != info) {
+ dev_warn(&spi->dev, "found %s, expected %s\n",
+ chip ? chip->name : "UNKNOWN",
+ info->name);
+ info = NULL;
+ }
+ }
+ } else
+ info = jedec_probe(spi);
+
+ if (!info)
+ return -ENODEV;
+
+ flash = kzalloc(sizeof *flash, GFP_KERNEL);
+ if (!flash)
+ return -ENOMEM;
+
+ flash->plt_dev = spi;
+ mutex_init(&flash->lock);
+ dev_set_drvdata(&spi->dev, flash);
+
+ if (data && data->name)
+ flash->mtd.name = data->name;
+ else
+ flash->mtd.name = dev_name(&spi->dev);
+
+ flash->mtd.type = MTD_NORFLASH;
+ flash->mtd.writesize = 1;
+ flash->mtd.flags = MTD_CAP_NORFLASH;
+ flash->mtd.size = info->sector_size * info->n_sectors;
+ flash->mtd.erase = ubicom32_flash_driver_erase;
+ flash->mtd.read = ubicom32_flash_driver_read;
+ flash->mtd.write = ubicom32_flash_driver_write;
+
+ /* prefer "small sector" erase if possible */
+ /*
+ * The Ubicom erase code does not use the opcode for smaller sectors,
+ * so disable that functionality and keep erasesize == sector_size
+ * so that the test in ubicom32_flash_driver_erase works properly.
+ *
+ * This was: `if (info->flags & SECT_4K) {' instead of `if (0) {'
+ */
+ if (0) {
+ flash->erase_opcode = OPCODE_BE_4K;
+ flash->mtd.erasesize = 4096;
+ } else {
+ flash->erase_opcode = OPCODE_SE;
+ flash->mtd.erasesize = info->sector_size;
+ }
+
+ dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
+ flash->mtd.size / 1024);
+
+ DEBUG(MTD_DEBUG_LEVEL2,
+ "mtd .name = %s, .size = 0x%.8llx (%lluMiB) "
+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
+ flash->mtd.name,
+ flash->mtd.size, flash->mtd.size / (1024*1024),
+ flash->mtd.erasesize, flash->mtd.erasesize / 1024,
+ flash->mtd.numeraseregions);
+
+ if (flash->mtd.numeraseregions)
+ for (i = 0; i < flash->mtd.numeraseregions; i++)
+ DEBUG(MTD_DEBUG_LEVEL2,
+ "mtd.eraseregions[%d] = { .offset = 0x%.8llx, "
+ ".erasesize = 0x%.8x (%uKiB), "
+ ".numblocks = %d }\n",
+ i, flash->mtd.eraseregions[i].offset,
+ flash->mtd.eraseregions[i].erasesize,
+ flash->mtd.eraseregions[i].erasesize / 1024,
+ flash->mtd.eraseregions[i].numblocks);
+
+
+ /* partitions should match sector boundaries; and it may be good to
+ * use readonly partitions for writeprotected sectors (BP2..BP0).
+ */
+ if (mtd_has_partitions()) {
+ struct mtd_partition *parts = NULL;
+ int nr_parts = 0;
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ static const char *part_probes[] = { "cmdlinepart", NULL, };
+
+ nr_parts = parse_mtd_partitions(&flash->mtd,
+ part_probes, &parts, 0);
+#endif
+
+ if (nr_parts <= 0 && data && data->parts) {
+ parts = data->parts;
+ nr_parts = data->nr_parts;
+ if (nr_parts >= 2) {
+ /*
+ * Set last partition size to be 1M.
+ */
+ parts[1].size = flash->mtd.size -
+ parts[0].size - JFFS2_FILESYSTEM_SIZE;
+ parts[2].size = JFFS2_FILESYSTEM_SIZE;
+ }
+ }
+
+ if (nr_parts > 0) {
+ for (i = 0; i < nr_parts; i++) {
+ DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
+ "{.name = %s, .offset = 0x%.8llx, "
+ ".size = 0x%.8llx (%lluKiB) }\n",
+ i, parts[i].name,
+ parts[i].offset,
+ parts[i].size,
+ parts[i].size / 1024);
+ }
+ flash->partitioned = 1;
+ return add_mtd_partitions(&flash->mtd, parts, nr_parts);
+ }
+ } else if (data->nr_parts)
+ dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
+ data->nr_parts, data->name);
+
+ return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
+}
+
+
+static int __devexit ubicom32_flash_remove(struct spi_device *spi)
+{
+ struct m25p *flash = dev_get_drvdata(&spi->dev);
+ int status;
+
+ /* Clean up MTD stuff. */
+ if (mtd_has_partitions() && flash->partitioned)
+ status = del_mtd_partitions(&flash->mtd);
+ else
+ status = del_mtd_device(&flash->mtd);
+ if (status == 0)
+ kfree(flash);
+ return 0;
+}
+
+static struct platform_driver ubicom32_flash_driver = {
+ .driver = {
+ .name = "ubicom32flashdriver",
+ .bus = &platform_bus_type,
+ .owner = THIS_MODULE,
+ },
+ .probe = ubicom32_flash_probe,
+ .remove = NULL,
+};
+
+static int ubicom32_flash_driver_init(void)
+{
+ return platform_driver_register(&ubicom32_flash_driver);
+}
+
+
+static void ubicom32_flash_driver_exit(void)
+{
+ platform_driver_unregister(&ubicom32_flash_driver);
+}
+
+
+module_init(ubicom32_flash_driver_init);
+module_exit(ubicom32_flash_driver_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mike Lavender");
+MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips");
diff --git a/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c
new file mode 100644
index 000000000..897bed787
--- /dev/null
+++ b/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-nand-spi-er.c
@@ -0,0 +1,1188 @@
+/*
+ * Micron SPI-ER NAND Flash Memory
+ * This code uses the built in Ubicom flash controller
+ *
+ * (C) Copyright 2009, Ubicom, Inc.
+ *
+ * This file is part of the Ubicom32 Linux Kernel Port.
+ *
+ * The Ubicom32 Linux Kernel Port is free software: you can redistribute
+ * it and/or modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * The Ubicom32 Linux Kernel Port is distributed in the hope that it
+ * will be useful, but WITHOUT ANY WARRANTY; without even the implied
+ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with the Ubicom32 Linux Kernel Port. If not,
+ * see <http://www.gnu.org/licenses/>.
+*/
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/mutex.h>
+#include <linux/err.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+
+#define DRIVER_NAME "ubi32-nand-spi-er"
+#define UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row) (row >> 6)
+
+#define UBI32_NAND_SPI_ER_STATUS_P_FAIL (1 << 3)
+#define UBI32_NAND_SPI_ER_STATUS_E_FAIL (1 << 2)
+#define UBI32_NAND_SPI_ER_STATUS_OIP (1 << 0)
+
+#define UBI32_NAND_SPI_ER_LAST_ROW_INVALID 0xFFFFFFFF
+#define UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET 0x08
+
+struct ubi32_nand_spi_er_device {
+ const char *name;
+
+ uint16_t id;
+
+ unsigned int blocks;
+ unsigned int pages_per_block;
+ unsigned int page_size;
+ unsigned int write_size;
+ unsigned int erase_size;
+};
+
+struct ubi32_nand_spi_er {
+ char name[24];
+
+ const struct ubi32_nand_spi_er_device *device;
+
+ struct mutex lock;
+ struct platform_device *pdev;
+
+ struct mtd_info mtd;
+
+ unsigned int last_row; /* the last row we fetched */
+
+ /*
+ * Bad block table (MUST be last in strcuture)
+ */
+ unsigned long nbb;
+ unsigned long bbt[0];
+};
+
+/*
+ * Chip supports a write_size of 512, but we cannot do partial
+ * page with command 0x84.
+ *
+ * We need to use command 0x84 because we cannot fill the FIFO fast
+ * enough to transfer the whole 512 bytes at a time. (maybe through
+ * OCM?)
+ */
+const struct ubi32_nand_spi_er_device ubi32_nand_spi_er_devices[] = {
+ {
+ name: "MT29F1G01ZDC",
+ id: 0x2C12,
+ blocks: 1024,
+ pages_per_block: 64,
+ page_size: 2048,
+ write_size: 2048,
+ erase_size: 64 * 2048,
+ },
+ {
+ name: "MT29F1G01ZDC",
+ id: 0x2C13,
+ blocks: 1024,
+ pages_per_block: 64,
+ page_size: 2048,
+ write_size: 2048,
+ erase_size: 64 * 2048,
+ },
+};
+
+static int read_only = 0;
+module_param(read_only, int, 0);
+MODULE_PARM_DESC(read_only, "Leave device locked");
+
+/*
+ * Ubicom32 FLASH Command Set
+ */
+#define FLASH_PORT RA
+
+#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */
+#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */
+#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */
+
+#define FLASH_COMMAND_KICK_OFF(io) \
+ asm volatile( \
+ " bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
+ " jmpt.t .+4 \n\t" \
+ " bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \
+ : \
+ : "a" (io) \
+ : "cc" \
+ );
+
+#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \
+ asm volatile( \
+ " btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
+ " jmpeq.f .-4 \n\t" \
+ : \
+ : "a" (io) \
+ : "cc" \
+ );
+
+#define FLASH_COMMAND_EXEC(io) \
+ FLASH_COMMAND_KICK_OFF(io) \
+ FLASH_COMMAND_WAIT_FOR_COMPLETION(io)
+
+/*
+ * ubi32_nand_spi_er_get_feature
+ * Get Feature register
+ */
+static uint8_t ubi32_nand_spi_er_get_feature(uint32_t reg)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ /*
+ * Note that this will produce the sequence:
+ * SI [0F][REG][00][00]
+ * SO ---------[SR][SR][SR]
+ * Since the flash controller can only output 24 bits of address, this is
+ * ok for this command since the data will just repeat as long as the CS
+ * is asserted and the clock is running.
+ */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(1) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x0F) | IO_XFL_CTL2_FC_ADDR(reg << 16);
+ FLASH_COMMAND_EXEC(io);
+
+ return io->status1 & 0xFF;
+}
+
+/*
+ * ubi32_nand_spi_er_write_buf
+ * writes a buffer to the bus
+ *
+ * Writes 511 + 1 bytes to the bus, we have to stuff one data byte into the address.
+ */
+static void ubi32_nand_spi_er_write_buf(const uint8_t *buf, uint32_t col)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+ uint32_t tmp;
+
+ asm volatile (
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
+ " pipe_flush 0 \n\t"
+ :
+ : [port] "a" (FLASH_PORT)
+ : "cc"
+ );
+
+ /*
+ * Write the data into the cache
+ */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+#ifdef SUPPORT_512_FIFO
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(511) |
+#endif
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(31) |
+ IO_XFL_CTL1_FC_ADDR;
+
+ /*
+ * Construct the address with the first byte of data
+ */
+ tmp = (col << 8) | *buf++;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84) | IO_XFL_CTL2_FC_ADDR(tmp);
+
+ asm volatile (
+
+ /*
+ * Move 32 bytes
+ *
+ * The first word needs to be [11][22][33][33] to work around a flash
+ * controller bug.
+ */
+ " move.2 %[tmp], (%[data])2++ \n\t"
+ " shmrg.1 %[tmp], (%[data]), %[tmp] \n\t"
+ " shmrg.1 %[tmp], (%[data])1++, %[tmp] \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), %[tmp] \n\t"
+
+ /*
+ * We're aligned again!
+ */
+ " .rept 7 \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
+ " .endr \n\t"
+
+ /*
+ * Kick off the flash command
+ */
+ " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpt.t .+4 \n\t"
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
+
+#ifdef SUPPORT_512_FIFO
+ /*
+ * Fill the remaining 120 words as space becomes available
+ */
+ "1: \n\t"
+ " cmpi "D(IO_FIFO_LEVEL)"(%[port]), #4 \n\t"
+ " jmpgt.s.t 1b \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), (%[data])4++ \n\t"
+ " add.4 %[cnt], #-4, %[cnt] \n\t"
+ " jmpgt.t 1b \n\t"
+#endif
+ /*
+ * Wait for the transaction to finish
+ */
+ " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpeq.f .-4 \n\t"
+
+ : [tmp] "=&d" (tmp),
+ [data] "+&a" (buf)
+ : [column] "d" (col),
+ [port] "a" (FLASH_PORT),
+ [cnt] "d" (120) // see above comment
+ : "cc"
+ );
+}
+
+/*
+ * ubi32_nand_spi_er_send_rd_addr
+ * perform FC_RD: CMD + address
+ */
+static void ubi32_nand_spi_er_send_rd_addr(uint8_t command, uint32_t address)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(4) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address);
+ FLASH_COMMAND_EXEC(io);
+}
+
+/*
+ * ubi32_nand_spi_er_send_cmd_addr
+ * perform FC_(xxx): CMD + address
+ */
+static void ubi32_nand_spi_er_send_cmd_addr(uint8_t command, uint32_t address)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) | IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(command) | IO_XFL_CTL2_FC_ADDR(address);
+ FLASH_COMMAND_EXEC(io);
+}
+
+/*
+ * ubi32_nand_spi_er_write_disable
+ * clear the write enable bit
+ */
+static void ubi32_nand_spi_er_write_disable(void)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x04);
+ FLASH_COMMAND_EXEC(io);
+}
+
+/*
+ * ubi32_nand_spi_er_write_enable
+ * set the write enable bit
+ */
+static void ubi32_nand_spi_er_write_enable(void)
+{
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x06);
+ FLASH_COMMAND_EXEC(io);
+}
+
+/*
+ * ubi32_nand_spi_er_busywait
+ * Wait until the chip is not busy
+ */
+static uint8_t ubi32_nand_spi_er_busywait(void)
+{
+ int i;
+ uint8_t data;
+
+ /*
+ * tRD is 100us, so don't delay too long, however, tERS is
+ * 10ms so you'd better loop enough.
+ */
+ for (i = 0; i < 200; i++) {
+ data = ubi32_nand_spi_er_get_feature(0xC0);
+ if (!(data & UBI32_NAND_SPI_ER_STATUS_OIP)) {
+ break;
+ }
+
+ udelay(50);
+ }
+
+ return data;
+}
+
+/*
+ * ubi32_nand_spi_er_erase
+ * Erase a block, parameters must be block aligned
+ */
+static int ubi32_nand_spi_er_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct ubi32_nand_spi_er *chip = mtd->priv;
+ int res;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: erase addr:%x len:%x\n", chip->name, instr->addr, instr->len);
+
+ if ((instr->addr + instr->len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ if (instr->addr & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: erase address is not aligned %x\n", chip->name, instr->addr);
+ return -EINVAL;
+ }
+
+ if (instr->len & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: erase len is not aligned %x\n", chip->name, instr->len);
+ return -EINVAL;
+ }
+
+ mutex_lock(&chip->lock);
+ chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
+
+ while (instr->len) {
+ uint32_t block = instr->addr >> 17;
+ uint32_t row = block << 6;
+ uint8_t stat;
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: block erase row:%x block:%x addr:%x rem:%x\n", chip->name, row, block, instr->addr, instr->len);
+
+ /*
+ * Test for bad block
+ */
+ if (test_bit(block, chip->bbt)) {
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ res = -EBADMSG;
+ goto done;
+ }
+
+ ubi32_nand_spi_er_write_enable();
+
+ /*
+ * Block erase
+ */
+ ubi32_nand_spi_er_send_cmd_addr(0xD8, row);
+
+ /*
+ * Wait
+ */
+ stat = ubi32_nand_spi_er_busywait();
+ if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ /*
+ * Check the status register
+ */
+ if (stat & UBI32_NAND_SPI_ER_STATUS_E_FAIL) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: E_FAIL signalled (%02x)\n", chip->name, stat);
+ instr->fail_addr = block << 17;
+ instr->state = MTD_ERASE_FAILED;
+ goto done;
+ }
+
+ /*
+ * Next
+ */
+ block++;
+ instr->len -= chip->device->erase_size;
+ instr->addr += chip->device->erase_size;
+ }
+
+ instr->state = MTD_ERASE_DONE;
+
+ mutex_unlock(&chip->lock);
+ return 0;
+
+done:
+ ubi32_nand_spi_er_write_disable();
+
+ mutex_unlock(&chip->lock);
+
+ mtd_erase_callback(instr);
+ return 0;
+}
+
+/*
+ * ubi32_nand_spi_er_read
+ *
+ * return -EUCLEAN: ecc error recovered
+ * return -EBADMSG: ecc error not recovered
+*/
+static int ubi32_nand_spi_er_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct ubi32_nand_spi_er *chip = mtd->priv;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ uint32_t row;
+ uint32_t column;
+ int retval = 0;
+ uint32_t *pbuf = (uint32_t *)buf;
+
+ *retlen = 0;
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: read block from %llx len %d into %p\n", chip->name, from, len, buf);
+
+ /*
+ * buf should be aligned
+ */
+ if ((uint32_t)buf & 0x03) {
+ return -EINVAL;
+ }
+
+ /*
+ * Zero length reads, nothing to do
+ */
+ if (len == 0) {
+ return 0;
+ }
+
+ /*
+ * Reject reads which go over the end of the flash
+ */
+ if ((from + len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ /*
+ * Get the row and column address to start at
+ */
+ row = from >> 11;
+ column = from & 0x7FF;
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: row=%x %d column=%x %d last_row=%x %d\n", chip->name, row, row, column, column, chip->last_row, chip->last_row);
+
+ /*
+ * Read the data from the chip
+ */
+ mutex_lock(&chip->lock);
+ while (len) {
+ uint8_t stat;
+ size_t toread;
+ int i;
+ int tmp;
+
+ /*
+ * Figure out how much to read
+ *
+ * If we are reading from the middle of a page then the most we
+ * can read is to the end of the page
+ */
+ toread = len;
+ if (toread > (chip->device->page_size - column)) {
+ toread = chip->device->page_size - column;
+ }
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: buf=%p toread=%x row=%x column=%x last_row=%x\n", chip->name, pbuf, toread, row, column, chip->last_row);
+
+ if (chip->last_row != row) {
+ /*
+ * Check if the block is bad
+ */
+ if (test_bit(UBI32_NAND_SPI_ER_BLOCK_FROM_ROW(row), chip->bbt)) {
+ mutex_unlock(&chip->lock);
+ return -EBADMSG;
+ }
+
+ /*
+ * Load the appropriate page
+ */
+ ubi32_nand_spi_er_send_cmd_addr(0x13, row);
+
+ /*
+ * Wait
+ */
+ stat = ubi32_nand_spi_er_busywait();
+ if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
+
+ /*
+ * Chip is stuck?
+ */
+ mutex_unlock(&chip->lock);
+ return -EIO;
+ }
+
+ /*
+ * Check the ECC bits
+ */
+ stat >>= 4;
+ if (stat == 1) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: ECC recovered, row=%x\n", chip->name, row);
+ retval = -EUCLEAN;
+ }
+ if (stat == 2) {
+ DEBUG(MTD_DEBUG_LEVEL0, "%s: failed ECC, row=%x\n", chip->name, row);
+ chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
+ mutex_unlock(&chip->lock);
+ return -EBADMSG;
+ }
+
+ }
+
+ chip->last_row = row;
+
+ /*
+ * Read out the data:
+ * We can always read a little too much since there is the
+ * OOB after byte addr 2047. The most we'll overread is 3 bytes.
+ */
+ if (((uint32_t)pbuf & 0x03) == 0) {
+ /*
+ * Aligned read
+ */
+ tmp = toread & (~0x03);
+ for (i = 0; i < tmp; i += 4) {
+ ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
+ *pbuf++ = io->status1;
+ column += 4;
+ }
+ } else {
+ /*
+ * Unaligned read
+ */
+ tmp = toread & (~0x03);
+ for (i = 0; i < tmp; i += 4) {
+ ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
+ memcpy(pbuf, &io->status1, 4);
+ column += 4;
+ }
+ }
+
+ /*
+ * Fill in any single bytes
+ */
+ tmp = toread & 0x03;
+ if (tmp) {
+ uint8_t *bbuf = pbuf;
+ uint32_t val;
+ ubi32_nand_spi_er_send_rd_addr(0x03, column << 8);
+ val = io->status1;
+ for (i = 0; i < tmp; i++) {
+ *bbuf++ = val >> 24;
+ val <<= 8;
+ }
+ }
+
+ len -= toread;
+ *retlen += toread;
+
+ /*
+ * For the next page, increment the row and always start at column 0
+ */
+ column = 0;
+ row++;
+ }
+
+ mutex_unlock(&chip->lock);
+ return retval;
+}
+
+/*
+ * ubi32_nand_spi_er_write
+ */
+#define WRITE_NOT_ALIGNED(x) ((x & (device->write_size - 1)) != 0)
+static int ubi32_nand_spi_er_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct ubi32_nand_spi_er *chip = mtd->priv;
+ const struct ubi32_nand_spi_er_device *device = chip->device;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+ uint32_t row;
+ uint32_t col;
+ int res = 0;
+ size_t towrite;
+
+ DEBUG(MTD_DEBUG_LEVEL2, "%s: write block to %llx len %d from %p\n", chip->name, to, len, buf);
+
+ *retlen = 0;
+
+ /*
+ * nothing to write
+ */
+ if (!len) {
+ return 0;
+ }
+
+ /*
+ * Reject writes which go over the end of the flash
+ */
+ if ((to + len) > mtd->size) {
+ return -EINVAL;
+ }
+
+ /*
+ * buf should be aligned to 16 bits
+ */
+ if ((uint32_t)buf & 0x01) {
+ return -EINVAL;
+ }
+
+ /*
+ * Check to see if everything is page aligned
+ */
+ if (WRITE_NOT_ALIGNED(to) || WRITE_NOT_ALIGNED(len)) {
+ printk(KERN_NOTICE "ubi32_nand_spi_er_write: Attempt to write non page aligned data\n");
+ return -EINVAL;
+ }
+
+ mutex_lock(&chip->lock);
+
+ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
+
+ chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
+
+ /*
+ * If the first write is a partial write then write at most the number of
+ * bytes to get us page aligned and then the remainder will be
+ * page aligned. The last bit may be a partial page as well.
+ */
+ col = to & (device->page_size - 1);
+ towrite = device->page_size - col;
+ if (towrite > len) {
+ towrite = len;
+ }
+
+ /*
+ * Write the data
+ */
+ row = to >> 11;
+ while (len) {
+ uint8_t stat;
+ uint32_t my_towrite;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: write %p to row:%x col:%x len:%x rem:%x\n", chip->name, buf, row, col, towrite, len);
+
+ ubi32_nand_spi_er_write_enable();
+
+ /*
+ * Move the data into the cache
+ */
+ my_towrite = towrite;
+ while (my_towrite) {
+ uint32_t len = my_towrite;
+ if (len > 32) {
+ len = 32;
+ }
+
+ ubi32_nand_spi_er_write_buf(buf, col);
+ buf += len;
+ col += len;
+ my_towrite -= len;
+ }
+
+ /*
+ * Program execute
+ */
+ ubi32_nand_spi_er_send_cmd_addr(0x10, row);
+
+ /*
+ * Wait
+ */
+ stat = ubi32_nand_spi_er_busywait();
+ if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ if (stat & (1 << 3)) {
+ res = -EBADMSG;
+ goto done;
+ }
+
+ row++;
+ len -= towrite;
+ *retlen += towrite;
+
+ /*
+ * At this point, we are always page aligned so start at column 0.
+ * Note we may not have a full page to write at the end, hence the
+ * check if towrite > len.
+ */
+ col = 0;
+ towrite = device->page_size;
+ if (towrite > len) {
+ towrite = len;
+ }
+ }
+
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+
+ mutex_unlock(&chip->lock);
+ return res;
+
+done:
+ ubi32_nand_spi_er_write_disable();
+
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+
+ mutex_unlock(&chip->lock);
+
+ return res;
+}
+
+/*
+ * ubi32_nand_spi_er_isbad
+ */
+static int ubi32_nand_spi_er_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct ubi32_nand_spi_er *chip = mtd->priv;
+ uint32_t block;
+
+ if (ofs & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
+ return -EINVAL;
+ }
+
+ block = ofs >> 17;
+
+ return test_bit(block, chip->bbt);
+}
+
+/*
+ * ubi32_nand_spi_er_markbad
+ */
+static int ubi32_nand_spi_er_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct ubi32_nand_spi_er *chip = mtd->priv;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+ uint32_t block;
+ uint32_t row;
+ int res = 0;
+ uint8_t stat;
+
+ if (ofs & (chip->device->erase_size - 1)) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: address not aligned %llx\n", chip->name, ofs);
+ return -EINVAL;
+ }
+
+ block = ofs >> 17;
+
+ /*
+ * If it's already marked bad, no need to mark it
+ */
+ if (test_bit(block, chip->bbt)) {
+ return 0;
+ }
+
+ /*
+ * Mark it in our cache
+ */
+ __set_bit(block, chip->bbt);
+
+ /*
+ * Write the user bad block mark. If it fails, then we really
+ * can't do anything about it.
+ */
+ mutex_lock(&chip->lock);
+ chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
+
+ ubi32_nand_spi_er_write_enable();
+
+ /*
+ * Write the mark
+ */
+ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(6);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x84);
+
+ asm volatile (
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
+ " pipe_flush 0 \n\t"
+
+ /*
+ * Move the data into the FIFO
+ */
+ " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t"
+ " move.4 "D(IO_TX_FIFO)"(%[port]), %[word2] \n\t"
+
+ /*
+ * Kick off the flash command
+ */
+ " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpt.t .+4 \n\t"
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
+
+ /*
+ * Wait for the transaction to finish
+ */
+ " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpeq.f .-4 \n\t"
+
+ :
+ : [word1] "d" (0x0800dead | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 16)),
+ [word2] "d" (0xbeef0000),
+ [port] "a" (FLASH_PORT)
+ : "cc"
+ );
+
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+
+ /*
+ * Program execute
+ */
+ row = block << 6;
+ ubi32_nand_spi_er_send_cmd_addr(0x10, row);
+
+ /*
+ * Wait
+ */
+ stat = ubi32_nand_spi_er_busywait();
+ if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
+
+ /*
+ * Chip is stuck?
+ */
+ res = -EIO;
+ goto done;
+ }
+
+ if (stat & (1 << 3)) {
+ res = -EBADMSG;
+ }
+
+done:
+ ubi32_nand_spi_er_write_disable();
+
+ mutex_unlock(&chip->lock);
+
+ return res;
+}
+
+/*
+ * ubi32_nand_spi_er_read_bbt
+ */
+static int ubi32_nand_spi_er_read_bbt(struct ubi32_nand_spi_er *chip)
+{
+ int j;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ for (j = 0; j < chip->device->blocks; j++) {
+ unsigned short row = j << 6;
+ uint8_t stat;
+
+ /*
+ * Read Page
+ */
+ ubi32_nand_spi_er_send_cmd_addr(0x13, row);
+
+ /*
+ * Wait
+ */
+ stat = ubi32_nand_spi_er_busywait();
+ if (stat & UBI32_NAND_SPI_ER_STATUS_OIP) {
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: chip is busy or nonresponsive stat=%02x\n", chip->name, stat);
+
+ /*
+ * Chip is stuck?
+ */
+ return -EIO;
+ }
+
+ /*
+ * Check factory bad block mark
+ */
+ ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000);
+
+ if ((io->status1 >> 24) != 0xFF) {
+ chip->nbb++;
+ __set_bit(j, chip->bbt);
+ continue;
+ }
+
+ ubi32_nand_spi_er_send_rd_addr(0x03, 0x080000 | (UBI32_NAND_SPI_ER_BAD_BLOCK_MARK_OFFSET << 8));
+ if (io->status1 == 0xdeadbeef) {
+ chip->nbb++;
+ __set_bit(j, chip->bbt);
+ }
+ }
+
+#if defined(CONFIG_MTD_DEBUG) && (MTD_DEBUG_LEVEL3 <= CONFIG_MTD_DEBUG_VERBOSE)
+ printk("%s: Bad Block Table:", chip->name);
+ for (j = 0; j < chip->device->blocks; j++) {
+ if ((j % 64) == 0) {
+ printk("\n%s: block %03x: ", chip->name, j);
+ }
+ printk("%c", test_bit(j, chip->bbt) ? 'X' : '.');
+ }
+ printk("\n%s: Bad Block Numbers: ", chip->name);
+ for (j = 0; j < chip->device->blocks; j++) {
+ if (test_bit(j, chip->bbt)) {
+ printk("%x ", j);
+ }
+ }
+ printk("\n");
+#endif
+
+ return 0;
+}
+
+#ifndef MODULE
+/*
+ * Called at boot time:
+ *
+ * ubi32_nand_spi_er=read_only
+ * if read_only specified then do not unlock device
+ */
+static int __init ubi32_nand_spi_er_setup(char *str)
+{
+ if (str && (strncasecmp(str, "read_only", 9) == 0)) {
+ read_only = 1;
+ }
+ return 0;
+}
+
+__setup("ubi32_nand_spi_er=", ubi32_nand_spi_er_setup);
+#endif
+
+/*
+ * ubi32_nand_spi_er_probe
+ * Detect and initialize ubi32_nand_spi_er device.
+ */
+static int __devinit ubi32_nand_spi_er_probe(struct platform_device *pdev)
+{
+ uint32_t i;
+ uint32_t id;
+ int res;
+ size_t bbt_bytes;
+ struct ubi32_nand_spi_er *chip;
+ const struct ubi32_nand_spi_er_device *device;
+ struct ubicom32_io_port *io = (struct ubicom32_io_port *)FLASH_PORT;
+
+ /*
+ * Reset
+ */
+ for (i = 0; i < 2; i++) {
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0xFF);
+ FLASH_COMMAND_EXEC(io);
+ udelay(250);
+ }
+ udelay(1000);
+
+ /*
+ * Read out ID
+ */
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) | IO_XFL_CTL1_FC_DATA(2) |
+ IO_XFL_CTL1_FC_ADDR;
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x9F);
+ FLASH_COMMAND_EXEC(io);
+
+ id = io->status1 >> 16;
+ device = ubi32_nand_spi_er_devices;
+ for (i = 0; i < ARRAY_SIZE(ubi32_nand_spi_er_devices); i++) {
+ if (device->id == id) {
+ break;
+ }
+ device++;
+ }
+ if (i == ARRAY_SIZE(ubi32_nand_spi_er_devices)) {
+ return -ENODEV;
+ }
+
+ /*
+ * Initialize our chip structure
+ */
+ bbt_bytes = DIV_ROUND_UP(device->blocks, BITS_PER_BYTE);
+ chip = kzalloc(sizeof(struct ubi32_nand_spi_er) + bbt_bytes, GFP_KERNEL);
+ if (!chip) {
+ return -ENOMEM;
+ }
+ snprintf(chip->name, sizeof(chip->name), "%s", device->name);
+
+ chip->device = device;
+ chip->last_row = UBI32_NAND_SPI_ER_LAST_ROW_INVALID;
+
+ mutex_init(&chip->lock);
+
+ chip->mtd.type = MTD_NANDFLASH;
+ chip->mtd.flags = MTD_WRITEABLE;
+
+ /*
+ * #blocks * block size * n blocks
+ */
+ chip->mtd.size = device->blocks * device->pages_per_block * device->page_size;
+ chip->mtd.erasesize = device->erase_size;
+
+ /*
+ * 1 page, optionally we can support partial write (512)
+ */
+ chip->mtd.writesize = device->write_size;
+ chip->mtd.name = device->name;
+ chip->mtd.erase = ubi32_nand_spi_er_erase;
+ chip->mtd.read = ubi32_nand_spi_er_read;
+ chip->mtd.write = ubi32_nand_spi_er_write;
+ chip->mtd.block_isbad = ubi32_nand_spi_er_isbad;
+ chip->mtd.block_markbad = ubi32_nand_spi_er_markbad;
+ chip->mtd.priv = chip;
+
+ /*
+ * Cache the bad block table
+ */
+ res = ubi32_nand_spi_er_read_bbt(chip);
+ if (res) {
+ kfree(chip);
+ return res;
+ }
+
+ /*
+ * Un/lock the chip
+ */
+ io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
+ io->ctl1 &= ~IO_XFL_CTL1_MASK;
+ io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) | IO_XFL_CTL1_FC_DATA(2);
+ io->ctl2 = IO_XFL_CTL2_FC_CMD(0x1F);
+
+ if (read_only) {
+ i = 0xa0380000;
+ } else {
+ i = 0xa0000000;
+ }
+ asm volatile (
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
+ " pipe_flush 0 \n\t"
+
+ /*
+ * Move the data into the FIFO
+ */
+ " move.4 "D(IO_TX_FIFO)"(%[port]), %[word1] \n\t"
+
+ /*
+ * Kick off the flash command
+ */
+ " bset "D(IO_INT_CLR)"(%[port]), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpt.t .+4 \n\t"
+ " bset "D(IO_INT_SET)"(%[port]), #0, #%%bit("D(IO_XFL_INT_START)") \n\t"
+
+ /*
+ * Wait for the transaction to finish
+ */
+ " btst "D(IO_INT_STATUS)"(%[port]), #%%bit("D(IO_XFL_INT_DONE)") \n\t"
+ " jmpeq.f .-4 \n\t"
+
+ :
+ : [word1] "d" (i),
+ [port] "a" (FLASH_PORT)
+ : "cc"
+ );
+ io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
+
+ dev_set_drvdata(&pdev->dev, chip);
+
+ printk(KERN_INFO "%s: added device size: %u KBytes %lu bad blocks %s\n", chip->mtd.name, DIV_ROUND_UP(chip->mtd.size, 1024), chip->nbb, read_only ? "[read only]" : "");
+ return add_mtd_device(&chip->mtd);
+}
+
+/*
+ * ubi32_nand_spi_er_remove
+ */
+static int __devexit ubi32_nand_spi_er_remove(struct platform_device *pdev)
+{
+ struct ubi32_nand_spi_er *chip = dev_get_drvdata(&pdev->dev);
+ int status;
+
+ DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", chip->name);
+
+ status = del_mtd_device(&chip->mtd);
+ if (status == 0) {
+ kfree(chip);
+ }
+
+ dev_set_drvdata(&pdev->dev, NULL);
+ return status;
+}
+
+static struct platform_device *ubi32_nand_spi_er_device;
+
+static struct platform_driver ubi32_nand_spi_er_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+ },
+
+ .probe = ubi32_nand_spi_er_probe,
+ .remove = ubi32_nand_spi_er_remove,
+};
+
+/*
+ * ubi32_nand_spi_er_init
+ */
+static int __init ubi32_nand_spi_er_init(void)
+{
+ int ret;
+
+ ret = platform_driver_register(&ubi32_nand_spi_er_driver);
+
+ if (ret) {
+ return ret;
+ }
+
+ ubi32_nand_spi_er_device = platform_device_alloc(DRIVER_NAME, 0);
+ if (!ubi32_nand_spi_er_device) {
+ return -ENOMEM;
+ }
+
+ ret = platform_device_add(ubi32_nand_spi_er_device);
+ if (ret) {
+ platform_device_put(ubi32_nand_spi_er_device);
+ platform_driver_unregister(&ubi32_nand_spi_er_driver);
+ }
+
+ return ret;
+}
+module_init(ubi32_nand_spi_er_init);
+
+/*
+ * ubi32_nand_spi_er_exit
+ */
+static void __exit ubi32_nand_spi_er_exit(void)
+{
+ platform_device_unregister(ubi32_nand_spi_er_device);
+ platform_driver_unregister(&ubi32_nand_spi_er_driver);
+}
+module_exit(ubi32_nand_spi_er_exit);
+
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Patrick Tjin");
+MODULE_DESCRIPTION("MTD ubi32_nand_spi_er driver for ubicom32 SPI flash controller.");