summaryrefslogtreecommitdiffstats
path: root/target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch')
-rw-r--r--target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch901
1 files changed, 0 insertions, 901 deletions
diff --git a/target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch b/target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch
deleted file mode 100644
index 48eb07de7..000000000
--- a/target/linux/generic-2.6/patches-2.6.31/052-pcomp_lzma_support.patch
+++ /dev/null
@@ -1,901 +0,0 @@
---- /dev/null
-+++ b/crypto/unlzma.c
-@@ -0,0 +1,775 @@
-+/*
-+ * LZMA uncompresion module for pcomp
-+ * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
-+ *
-+ * Based on:
-+ * Initial Linux kernel adaptation
-+ * Copyright (C) 2006 Alain < alain@knaff.lu >
-+ *
-+ * Based on small lzma deflate implementation/Small range coder
-+ * implementation for lzma.
-+ * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
-+ *
-+ * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
-+ * Copyright (C) 1999-2005 Igor Pavlov
-+ *
-+ * This program is free software; you can redistribute it and/or modify it
-+ * under the terms of the GNU General Public License version 2 as published
-+ * by the Free Software Foundation.
-+ *
-+ * FIXME: the current implementation assumes that the caller will
-+ * not free any output buffers until the whole decompression has been
-+ * completed. This is necessary, because LZMA looks back at old output
-+ * instead of doing a separate dictionary allocation, which saves RAM.
-+ */
-+
-+#include <linux/init.h>
-+#include <linux/module.h>
-+#include <linux/vmalloc.h>
-+#include <linux/interrupt.h>
-+#include <linux/mm.h>
-+#include <linux/net.h>
-+#include <linux/slab.h>
-+#include <linux/kthread.h>
-+
-+#include <crypto/internal/compress.h>
-+#include <net/netlink.h>
-+#include "unlzma.h"
-+
-+static int instance = 0;
-+
-+struct unlzma_buffer {
-+ int offset;
-+ int size;
-+ u8 *ptr;
-+};
-+
-+struct unlzma_ctx {
-+ struct task_struct *thread;
-+ wait_queue_head_t next_req;
-+ wait_queue_head_t req_done;
-+ struct mutex mutex;
-+ bool waiting;
-+ bool active;
-+ bool cancel;
-+
-+ const u8 *next_in;
-+ int avail_in;
-+
-+ u8 *next_out;
-+ int avail_out;
-+
-+ /* reader state */
-+ u32 code;
-+ u32 range;
-+ u32 bound;
-+
-+ /* writer state */
-+ u8 previous_byte;
-+ ssize_t pos;
-+ int buf_full;
-+ int n_buffers;
-+ int buffers_max;
-+ struct unlzma_buffer *buffers;
-+
-+ /* cstate */
-+ int state;
-+ u32 rep0, rep1, rep2, rep3;
-+
-+ u32 dict_size;
-+
-+ void *workspace;
-+ int workspace_size;
-+};
-+
-+static inline bool
-+unlzma_should_stop(struct unlzma_ctx *ctx)
-+{
-+ return unlikely(kthread_should_stop() || ctx->cancel);
-+}
-+
-+static void
-+get_buffer(struct unlzma_ctx *ctx)
-+{
-+ struct unlzma_buffer *bh;
-+
-+ BUG_ON(ctx->n_buffers >= ctx->buffers_max);
-+ bh = &ctx->buffers[ctx->n_buffers++];
-+ bh->ptr = ctx->next_out;
-+ bh->offset = ctx->pos;
-+ bh->size = ctx->avail_out;
-+ ctx->buf_full = 0;
-+}
-+
-+static void
-+unlzma_request_buffer(struct unlzma_ctx *ctx, int *avail)
-+{
-+ do {
-+ ctx->waiting = true;
-+ mutex_unlock(&ctx->mutex);
-+ wake_up(&ctx->req_done);
-+ if (wait_event_interruptible(ctx->next_req,
-+ unlzma_should_stop(ctx) || (*avail > 0)))
-+ schedule();
-+ mutex_lock(&ctx->mutex);
-+ } while (*avail <= 0 && !unlzma_should_stop(ctx));
-+
-+ if (!unlzma_should_stop(ctx) && ctx->buf_full)
-+ get_buffer(ctx);
-+}
-+
-+static u8
-+rc_read(struct unlzma_ctx *ctx)
-+{
-+ if (unlikely(ctx->avail_in <= 0))
-+ unlzma_request_buffer(ctx, &ctx->avail_in);
-+
-+ if (unlzma_should_stop(ctx))
-+ return 0;
-+
-+ ctx->avail_in--;
-+ return *(ctx->next_in++);
-+}
-+
-+
-+static inline void
-+rc_get_code(struct unlzma_ctx *ctx)
-+{
-+ ctx->code = (ctx->code << 8) | rc_read(ctx);
-+}
-+
-+static void
-+rc_normalize(struct unlzma_ctx *ctx)
-+{
-+ if (ctx->range < (1 << RC_TOP_BITS)) {
-+ ctx->range <<= 8;
-+ rc_get_code(ctx);
-+ }
-+}
-+
-+static int
-+rc_is_bit_0(struct unlzma_ctx *ctx, u16 *p)
-+{
-+ rc_normalize(ctx);
-+ ctx->bound = *p * (ctx->range >> RC_MODEL_TOTAL_BITS);
-+ return ctx->code < ctx->bound;
-+}
-+
-+static void
-+rc_update_bit_0(struct unlzma_ctx *ctx, u16 *p)
-+{
-+ ctx->range = ctx->bound;
-+ *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
-+}
-+
-+static void
-+rc_update_bit_1(struct unlzma_ctx *ctx, u16 *p)
-+{
-+ ctx->range -= ctx->bound;
-+ ctx->code -= ctx->bound;
-+ *p -= *p >> RC_MOVE_BITS;
-+}
-+
-+static bool
-+rc_get_bit(struct unlzma_ctx *ctx, u16 *p, int *symbol)
-+{
-+ if (rc_is_bit_0(ctx, p)) {
-+ rc_update_bit_0(ctx, p);
-+ *symbol *= 2;
-+ return 0;
-+ } else {
-+ rc_update_bit_1(ctx, p);
-+ *symbol = *symbol * 2 + 1;
-+ return 1;
-+ }
-+}
-+
-+static int
-+rc_direct_bit(struct unlzma_ctx *ctx)
-+{
-+ rc_normalize(ctx);
-+ ctx->range >>= 1;
-+ if (ctx->code >= ctx->range) {
-+ ctx->code -= ctx->range;
-+ return 1;
-+ }
-+ return 0;
-+}
-+
-+static void
-+rc_bit_tree_decode(struct unlzma_ctx *ctx, u16 *p, int num_levels, int *symbol)
-+{
-+ int i = num_levels;
-+
-+ *symbol = 1;
-+ while (i--)
-+ rc_get_bit(ctx, p + *symbol, symbol);
-+ *symbol -= 1 << num_levels;
-+}
-+
-+static u8
-+peek_old_byte(struct unlzma_ctx *ctx, u32 offs)
-+{
-+ struct unlzma_buffer *bh = &ctx->buffers[ctx->n_buffers - 1];
-+ int i = ctx->n_buffers;
-+ u32 pos;
-+
-+ if (!ctx->n_buffers) {
-+ printk(KERN_ERR "unlzma/%s: no buffer\n", __func__);
-+ goto error;
-+ }
-+
-+ pos = ctx->pos - offs;
-+ if (unlikely(pos >= ctx->dict_size))
-+ pos = ~pos & (ctx->dict_size - 1);
-+
-+ while (bh->offset > pos) {
-+ bh--;
-+ i--;
-+ if (!i) {
-+ printk(KERN_ERR "unlzma/%s: position %d out of range\n", __func__, pos);
-+ goto error;
-+ }
-+ }
-+
-+ pos -= bh->offset;
-+ if (pos >= bh->size) {
-+ printk(KERN_ERR "unlzma/%s: position %d out of range\n", __func__, pos);
-+ goto error;
-+ }
-+
-+ return bh->ptr[pos];
-+
-+error:
-+ ctx->cancel = true;
-+ return 0;
-+}
-+
-+static void
-+write_byte(struct unlzma_ctx *ctx, u8 byte)
-+{
-+ if (unlikely(ctx->avail_out <= 0)) {
-+ unlzma_request_buffer(ctx, &ctx->avail_out);
-+ }
-+
-+ if (!ctx->avail_out)
-+ return;
-+
-+ ctx->previous_byte = byte;
-+ *(ctx->next_out++) = byte;
-+ ctx->avail_out--;
-+ if (ctx->avail_out == 0)
-+ ctx->buf_full = 1;
-+ ctx->pos++;
-+}
-+
-+
-+static inline void
-+copy_byte(struct unlzma_ctx *ctx, u32 offs)
-+{
-+ write_byte(ctx, peek_old_byte(ctx, offs));
-+}
-+
-+static void
-+copy_bytes(struct unlzma_ctx *ctx, u32 rep0, int len)
-+{
-+ do {
-+ copy_byte(ctx, rep0);
-+ len--;
-+ if (unlzma_should_stop(ctx))
-+ break;
-+ } while (len != 0);
-+}
-+
-+static void
-+process_bit0(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob,
-+ int lc, u32 literal_pos_mask)
-+{
-+ int mi = 1;
-+ rc_update_bit_0(ctx, prob);
-+ prob = (p + LZMA_LITERAL +
-+ (LZMA_LIT_SIZE
-+ * (((ctx->pos & literal_pos_mask) << lc)
-+ + (ctx->previous_byte >> (8 - lc))))
-+ );
-+
-+ if (ctx->state >= LZMA_NUM_LIT_STATES) {
-+ int match_byte = peek_old_byte(ctx, ctx->rep0);
-+ do {
-+ u16 bit;
-+ u16 *prob_lit;
-+
-+ match_byte <<= 1;
-+ bit = match_byte & 0x100;
-+ prob_lit = prob + 0x100 + bit + mi;
-+ if (rc_get_bit(ctx, prob_lit, &mi) != !!bit)
-+ break;
-+ } while (mi < 0x100);
-+ }
-+ while (mi < 0x100) {
-+ u16 *prob_lit = prob + mi;
-+ rc_get_bit(ctx, prob_lit, &mi);
-+ }
-+ write_byte(ctx, mi);
-+ if (ctx->state < 4)
-+ ctx->state = 0;
-+ else if (ctx->state < 10)
-+ ctx->state -= 3;
-+ else
-+ ctx->state -= 6;
-+}
-+
-+static void
-+process_bit1(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob)
-+{
-+ int offset;
-+ u16 *prob_len;
-+ int num_bits;
-+ int len;
-+
-+ rc_update_bit_1(ctx, prob);
-+ prob = p + LZMA_IS_REP + ctx->state;
-+ if (rc_is_bit_0(ctx, prob)) {
-+ rc_update_bit_0(ctx, prob);
-+ ctx->rep3 = ctx->rep2;
-+ ctx->rep2 = ctx->rep1;
-+ ctx->rep1 = ctx->rep0;
-+ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 0 : 3;
-+ prob = p + LZMA_LEN_CODER;
-+ } else {
-+ rc_update_bit_1(ctx, prob);
-+ prob = p + LZMA_IS_REP_G0 + ctx->state;
-+ if (rc_is_bit_0(ctx, prob)) {
-+ rc_update_bit_0(ctx, prob);
-+ prob = (p + LZMA_IS_REP_0_LONG
-+ + (ctx->state <<
-+ LZMA_NUM_POS_BITS_MAX) +
-+ pos_state);
-+ if (rc_is_bit_0(ctx, prob)) {
-+ rc_update_bit_0(ctx, prob);
-+
-+ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ?
-+ 9 : 11;
-+ copy_byte(ctx, ctx->rep0);
-+ return;
-+ } else {
-+ rc_update_bit_1(ctx, prob);
-+ }
-+ } else {
-+ u32 distance;
-+
-+ rc_update_bit_1(ctx, prob);
-+ prob = p + LZMA_IS_REP_G1 + ctx->state;
-+ if (rc_is_bit_0(ctx, prob)) {
-+ rc_update_bit_0(ctx, prob);
-+ distance = ctx->rep1;
-+ } else {
-+ rc_update_bit_1(ctx, prob);
-+ prob = p + LZMA_IS_REP_G2 + ctx->state;
-+ if (rc_is_bit_0(ctx, prob)) {
-+ rc_update_bit_0(ctx, prob);
-+ distance = ctx->rep2;
-+ } else {
-+ rc_update_bit_1(ctx, prob);
-+ distance = ctx->rep3;
-+ ctx->rep3 = ctx->rep2;
-+ }
-+ ctx->rep2 = ctx->rep1;
-+ }
-+ ctx->rep1 = ctx->rep0;
-+ ctx->rep0 = distance;
-+ }
-+ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 8 : 11;
-+ prob = p + LZMA_REP_LEN_CODER;
-+ }
-+
-+ prob_len = prob + LZMA_LEN_CHOICE;
-+ if (rc_is_bit_0(ctx, prob_len)) {
-+ rc_update_bit_0(ctx, prob_len);
-+ prob_len = (prob + LZMA_LEN_LOW
-+ + (pos_state <<
-+ LZMA_LEN_NUM_LOW_BITS));
-+ offset = 0;
-+ num_bits = LZMA_LEN_NUM_LOW_BITS;
-+ } else {
-+ rc_update_bit_1(ctx, prob_len);
-+ prob_len = prob + LZMA_LEN_CHOICE_2;
-+ if (rc_is_bit_0(ctx, prob_len)) {
-+ rc_update_bit_0(ctx, prob_len);
-+ prob_len = (prob + LZMA_LEN_MID
-+ + (pos_state <<
-+ LZMA_LEN_NUM_MID_BITS));
-+ offset = 1 << LZMA_LEN_NUM_LOW_BITS;
-+ num_bits = LZMA_LEN_NUM_MID_BITS;
-+ } else {
-+ rc_update_bit_1(ctx, prob_len);
-+ prob_len = prob + LZMA_LEN_HIGH;
-+ offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
-+ + (1 << LZMA_LEN_NUM_MID_BITS));
-+ num_bits = LZMA_LEN_NUM_HIGH_BITS;
-+ }
-+ }
-+
-+ rc_bit_tree_decode(ctx, prob_len, num_bits, &len);
-+ len += offset;
-+
-+ if (ctx->state < 4) {
-+ int pos_slot;
-+
-+ ctx->state += LZMA_NUM_LIT_STATES;
-+ prob =
-+ p + LZMA_POS_SLOT +
-+ ((len <
-+ LZMA_NUM_LEN_TO_POS_STATES ? len :
-+ LZMA_NUM_LEN_TO_POS_STATES - 1)
-+ << LZMA_NUM_POS_SLOT_BITS);
-+ rc_bit_tree_decode(ctx, prob,
-+ LZMA_NUM_POS_SLOT_BITS,
-+ &pos_slot);
-+ if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
-+ int i, mi;
-+ num_bits = (pos_slot >> 1) - 1;
-+ ctx->rep0 = 2 | (pos_slot & 1);
-+ if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
-+ ctx->rep0 <<= num_bits;
-+ prob = p + LZMA_SPEC_POS +
-+ ctx->rep0 - pos_slot - 1;
-+ } else {
-+ num_bits -= LZMA_NUM_ALIGN_BITS;
-+ while (num_bits--)
-+ ctx->rep0 = (ctx->rep0 << 1) |
-+ rc_direct_bit(ctx);
-+ prob = p + LZMA_ALIGN;
-+ ctx->rep0 <<= LZMA_NUM_ALIGN_BITS;
-+ num_bits = LZMA_NUM_ALIGN_BITS;
-+ }
-+ i = 1;
-+ mi = 1;
-+ while (num_bits--) {
-+ if (rc_get_bit(ctx, prob + mi, &mi))
-+ ctx->rep0 |= i;
-+ i <<= 1;
-+ }
-+ } else
-+ ctx->rep0 = pos_slot;
-+ if (++(ctx->rep0) == 0)
-+ return;
-+ }
-+
-+ len += LZMA_MATCH_MIN_LEN;
-+
-+ copy_bytes(ctx, ctx->rep0, len);
-+}
-+
-+
-+static int
-+do_unlzma(struct unlzma_ctx *ctx)
-+{
-+ u8 hdr_buf[sizeof(struct lzma_header)];
-+ struct lzma_header *header = (struct lzma_header *)hdr_buf;
-+ u32 pos_state_mask;
-+ u32 literal_pos_mask;
-+ int lc, pb, lp;
-+ int num_probs;
-+ int i, mi;
-+ u16 *p;
-+
-+ for (i = 0; i < sizeof(struct lzma_header); i++) {
-+ hdr_buf[i] = rc_read(ctx);
-+ }
-+
-+ ctx->n_buffers = 0;
-+ ctx->pos = 0;
-+ get_buffer(ctx);
-+ ctx->active = true;
-+ ctx->state = 0;
-+ ctx->rep0 = ctx->rep1 = ctx->rep2 = ctx->rep3 = 1;
-+
-+ ctx->previous_byte = 0;
-+ ctx->code = 0;
-+ ctx->range = 0xFFFFFFFF;
-+
-+ ctx->dict_size = le32_to_cpu(header->dict_size);
-+
-+ if (header->pos >= (9 * 5 * 5))
-+ return -1;
-+
-+ mi = 0;
-+ lc = header->pos;
-+ while (lc >= 9) {
-+ mi++;
-+ lc -= 9;
-+ }
-+ pb = 0;
-+ lp = mi;
-+ while (lp >= 5) {
-+ pb++;
-+ lp -= 5;
-+ }
-+ pos_state_mask = (1 << pb) - 1;
-+ literal_pos_mask = (1 << lp) - 1;
-+
-+ if (ctx->dict_size == 0)
-+ ctx->dict_size = 1;
-+
-+ num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
-+ if (ctx->workspace_size < num_probs * sizeof(*p)) {
-+ if (ctx->workspace)
-+ vfree(ctx->workspace);
-+ ctx->workspace_size = num_probs * sizeof(*p);
-+ ctx->workspace = vmalloc(ctx->workspace_size);
-+ }
-+ p = (u16 *) ctx->workspace;
-+ if (!p)
-+ return -1;
-+
-+ num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
-+ for (i = 0; i < num_probs; i++)
-+ p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
-+
-+ for (i = 0; i < 5; i++)
-+ rc_get_code(ctx);
-+
-+ while (1) {
-+ int pos_state = ctx->pos & pos_state_mask;
-+ u16 *prob = p + LZMA_IS_MATCH +
-+ (ctx->state << LZMA_NUM_POS_BITS_MAX) + pos_state;
-+ if (rc_is_bit_0(ctx, prob))
-+ process_bit0(ctx, p, pos_state, prob,
-+ lc, literal_pos_mask);
-+ else {
-+ process_bit1(ctx, p, pos_state, prob);
-+ if (ctx->rep0 == 0)
-+ break;
-+ }
-+ if (unlzma_should_stop(ctx))
-+ break;
-+ }
-+ if (likely(!unlzma_should_stop(ctx)))
-+ rc_normalize(ctx);
-+
-+ return ctx->pos;
-+}
-+
-+
-+static void
-+unlzma_reset_buf(struct unlzma_ctx *ctx)
-+{
-+ ctx->avail_in = 0;
-+ ctx->next_in = NULL;
-+ ctx->avail_out = 0;
-+ ctx->next_out = NULL;
-+}
-+
-+static int
-+unlzma_thread(void *data)
-+{
-+ struct unlzma_ctx *ctx = data;
-+
-+ mutex_lock(&ctx->mutex);
-+ do {
-+ if (do_unlzma(ctx) < 0)
-+ ctx->pos = 0;
-+ unlzma_reset_buf(ctx);
-+ ctx->cancel = false;
-+ ctx->active = false;
-+ } while (!kthread_should_stop());
-+ mutex_unlock(&ctx->mutex);
-+ return 0;
-+}
-+
-+
-+static int
-+unlzma_init(struct crypto_tfm *tfm)
-+{
-+ return 0;
-+}
-+
-+static void
-+unlzma_cancel(struct unlzma_ctx *ctx)
-+{
-+ unlzma_reset_buf(ctx);
-+
-+ if (!ctx->active)
-+ return;
-+
-+ ctx->cancel = true;
-+ do {
-+ mutex_unlock(&ctx->mutex);
-+ wake_up(&ctx->next_req);
-+ schedule();
-+ mutex_lock(&ctx->mutex);
-+ } while (ctx->cancel);
-+}
-+
-+
-+static void
-+unlzma_exit(struct crypto_tfm *tfm)
-+{
-+ struct unlzma_ctx *ctx = crypto_tfm_ctx(tfm);
-+
-+ if (ctx->thread) {
-+ unlzma_cancel(ctx);
-+ kthread_stop(ctx->thread);
-+ ctx->thread = NULL;
-+ if (ctx->buffers)
-+ kfree(ctx->buffers);
-+ ctx->buffers_max = 0;
-+ ctx->buffers = NULL;
-+ }
-+}
-+
-+static int
-+unlzma_decompress_setup(struct crypto_pcomp *tfm, void *p, unsigned int len)
-+{
-+ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
-+ struct nlattr *tb[UNLZMA_DECOMP_MAX + 1];
-+ int ret = 0;
-+
-+ if (ctx->thread)
-+ return -EINVAL;
-+
-+ if (!p)
-+ return -EINVAL;
-+
-+ ret = nla_parse(tb, UNLZMA_DECOMP_MAX, p, len, NULL);
-+ if (ret)
-+ return ret;
-+
-+ if (!tb[UNLZMA_DECOMP_OUT_BUFFERS])
-+ return -EINVAL;
-+
-+ if (ctx->buffers_max && (ctx->buffers_max <
-+ nla_get_u32(tb[UNLZMA_DECOMP_OUT_BUFFERS]))) {
-+ kfree(ctx->buffers);
-+ ctx->buffers_max = 0;
-+ ctx->buffers = NULL;
-+ }
-+ if (!ctx->buffers) {
-+ ctx->buffers_max = nla_get_u32(tb[UNLZMA_DECOMP_OUT_BUFFERS]);
-+ ctx->buffers = kzalloc(sizeof(struct unlzma_buffer) * ctx->buffers_max, GFP_KERNEL);
-+ }
-+ if (!ctx->buffers)
-+ return -ENOMEM;
-+
-+ ctx->waiting = false;
-+ mutex_init(&ctx->mutex);
-+ init_waitqueue_head(&ctx->next_req);
-+ init_waitqueue_head(&ctx->req_done);
-+ ctx->thread = kthread_run(unlzma_thread, ctx, "unlzma/%d", instance++);
-+ if (IS_ERR(ctx->thread)) {
-+ ret = PTR_ERR(ctx->thread);
-+ ctx->thread = NULL;
-+ }
-+
-+ return ret;
-+}
-+
-+static int
-+unlzma_decompress_init(struct crypto_pcomp *tfm)
-+{
-+ return 0;
-+}
-+
-+static void
-+unlzma_wait_complete(struct unlzma_ctx *ctx, bool finish)
-+{
-+ DEFINE_WAIT(__wait);
-+
-+ do {
-+ wake_up(&ctx->next_req);
-+ prepare_to_wait(&ctx->req_done, &__wait, TASK_INTERRUPTIBLE);
-+ mutex_unlock(&ctx->mutex);
-+ schedule();
-+ mutex_lock(&ctx->mutex);
-+ } while (!ctx->waiting && ctx->active);
-+ finish_wait(&ctx->req_done, &__wait);
-+}
-+
-+static int
-+unlzma_decompress_update(struct crypto_pcomp *tfm, struct comp_request *req)
-+{
-+ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
-+ size_t pos = 0;
-+
-+ mutex_lock(&ctx->mutex);
-+ if (!ctx->active && !req->avail_in)
-+ goto out;
-+
-+ pos = ctx->pos;
-+ ctx->waiting = false;
-+ ctx->next_in = req->next_in;
-+ ctx->avail_in = req->avail_in;
-+ ctx->next_out = req->next_out;
-+ ctx->avail_out = req->avail_out;
-+
-+ unlzma_wait_complete(ctx, false);
-+
-+ req->next_in = ctx->next_in;
-+ req->avail_in = ctx->avail_in;
-+ req->next_out = ctx->next_out;
-+ req->avail_out = ctx->avail_out;
-+ ctx->next_in = 0;
-+ ctx->avail_in = 0;
-+ pos = ctx->pos - pos;
-+
-+out:
-+ mutex_unlock(&ctx->mutex);
-+ if (ctx->cancel)
-+ return -EINVAL;
-+
-+ return pos;
-+}
-+
-+static int
-+unlzma_decompress_final(struct crypto_pcomp *tfm, struct comp_request *req)
-+{
-+ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
-+ int ret = 0;
-+
-+ /* cancel pending operation */
-+ mutex_lock(&ctx->mutex);
-+ if (ctx->active) {
-+ // ret = -EINVAL;
-+ unlzma_cancel(ctx);
-+ }
-+ ctx->pos = 0;
-+ mutex_unlock(&ctx->mutex);
-+ return ret;
-+}
-+
-+
-+static struct pcomp_alg unlzma_alg = {
-+ .decompress_setup = unlzma_decompress_setup,
-+ .decompress_init = unlzma_decompress_init,
-+ .decompress_update = unlzma_decompress_update,
-+ .decompress_final = unlzma_decompress_final,
-+
-+ .base = {
-+ .cra_name = "lzma",
-+ .cra_flags = CRYPTO_ALG_TYPE_PCOMPRESS,
-+ .cra_ctxsize = sizeof(struct unlzma_ctx),
-+ .cra_module = THIS_MODULE,
-+ .cra_init = unlzma_init,
-+ .cra_exit = unlzma_exit,
-+ }
-+};
-+
-+static int __init
-+unlzma_mod_init(void)
-+{
-+ return crypto_register_pcomp(&unlzma_alg);
-+}
-+
-+static void __exit
-+unlzma_mod_exit(void)
-+{
-+ crypto_unregister_pcomp(&unlzma_alg);
-+}
-+
-+module_init(unlzma_mod_init);
-+module_exit(unlzma_mod_exit);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_DESCRIPTION("LZMA Decompression Algorithm");
-+MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
---- a/crypto/Kconfig
-+++ b/crypto/Kconfig
-@@ -768,6 +768,12 @@ config CRYPTO_ZLIB
- help
- This is the zlib algorithm.
-
-+config CRYPTO_UNLZMA
-+ tristate "LZMA decompression"
-+ select CRYPTO_PCOMP
-+ help
-+ This is the lzma decompression module.
-+
- config CRYPTO_LZO
- tristate "LZO compression algorithm"
- select CRYPTO_ALGAPI
---- a/crypto/Makefile
-+++ b/crypto/Makefile
-@@ -75,6 +75,7 @@ obj-$(CONFIG_CRYPTO_SEED) += seed.o
- obj-$(CONFIG_CRYPTO_SALSA20) += salsa20_generic.o
- obj-$(CONFIG_CRYPTO_DEFLATE) += deflate.o
- obj-$(CONFIG_CRYPTO_ZLIB) += zlib.o
-+obj-$(CONFIG_CRYPTO_UNLZMA) += unlzma.o
- obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += michael_mic.o
- obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
- obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o
---- /dev/null
-+++ b/crypto/unlzma.h
-@@ -0,0 +1,80 @@
-+/* LZMA uncompresion module for pcomp
-+ * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
-+ *
-+ * Based on:
-+ * Initial Linux kernel adaptation
-+ * Copyright (C) 2006 Alain < alain@knaff.lu >
-+ *
-+ * Based on small lzma deflate implementation/Small range coder
-+ * implementation for lzma.
-+ * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org >
-+ *
-+ * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
-+ * Copyright (C) 1999-2005 Igor Pavlov
-+ *
-+ * This program is free software; you can redistribute it and/or modify it
-+ * under the terms of the GNU General Public License version 2 as published
-+ * by the Free Software Foundation.
-+ */
-+#ifndef __UNLZMA_H
-+#define __UNLZMA_H
-+
-+struct lzma_header {
-+ __u8 pos;
-+ __le32 dict_size;
-+} __attribute__ ((packed)) ;
-+
-+
-+#define RC_TOP_BITS 24
-+#define RC_MOVE_BITS 5
-+#define RC_MODEL_TOTAL_BITS 11
-+
-+#define LZMA_BASE_SIZE 1846
-+#define LZMA_LIT_SIZE 768
-+
-+#define LZMA_NUM_POS_BITS_MAX 4
-+
-+#define LZMA_LEN_NUM_LOW_BITS 3
-+#define LZMA_LEN_NUM_MID_BITS 3
-+#define LZMA_LEN_NUM_HIGH_BITS 8
-+
-+#define LZMA_LEN_CHOICE 0
-+#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
-+#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
-+#define LZMA_LEN_MID (LZMA_LEN_LOW \
-+ + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
-+#define LZMA_LEN_HIGH (LZMA_LEN_MID \
-+ +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
-+#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
-+
-+#define LZMA_NUM_STATES 12
-+#define LZMA_NUM_LIT_STATES 7
-+
-+#define LZMA_START_POS_MODEL_INDEX 4
-+#define LZMA_END_POS_MODEL_INDEX 14
-+#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
-+
-+#define LZMA_NUM_POS_SLOT_BITS 6
-+#define LZMA_NUM_LEN_TO_POS_STATES 4
-+
-+#define LZMA_NUM_ALIGN_BITS 4
-+
-+#define LZMA_MATCH_MIN_LEN 2
-+
-+#define LZMA_IS_MATCH 0
-+#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
-+#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
-+#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
-+#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
-+#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
-+#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
-+ + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
-+#define LZMA_SPEC_POS (LZMA_POS_SLOT \
-+ +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
-+#define LZMA_ALIGN (LZMA_SPEC_POS \
-+ + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
-+#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
-+#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
-+#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
-+
-+#endif
---- a/include/crypto/compress.h
-+++ b/include/crypto/compress.h
-@@ -49,6 +49,12 @@ enum zlib_decomp_params {
-
- #define ZLIB_DECOMP_MAX (__ZLIB_DECOMP_MAX - 1)
-
-+enum unlzma_decomp_params {
-+ UNLZMA_DECOMP_OUT_BUFFERS = 1, /* naximum number of output buffers */
-+ __UNLZMA_DECOMP_MAX,
-+};
-+#define UNLZMA_DECOMP_MAX (__UNLZMA_DECOMP_MAX - 1)
-+
-
- struct crypto_pcomp {
- struct crypto_tfm base;