summaryrefslogtreecommitdiffstats
path: root/toolchain/gcc
diff options
context:
space:
mode:
authorhauke <hauke@3c298f89-4303-0410-b956-a3cf2f4a3e73>2011-08-18 12:13:54 +0000
committerhauke <hauke@3c298f89-4303-0410-b956-a3cf2f4a3e73>2011-08-18 12:13:54 +0000
commitfdb4676b62cc83746e2131011b142ea05b5ed1f8 (patch)
treed763b9b7608e0b44e4e3fdb935f4068b624044a5 /toolchain/gcc
parentf4d3cba607d04932838ed0ba4aac287138cf32f7 (diff)
gcc: add 4.6-linaro version 4.6-2011.08
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@28042 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'toolchain/gcc')
-rw-r--r--toolchain/gcc/Config.in3
-rw-r--r--toolchain/gcc/Config.version6
-rw-r--r--toolchain/gcc/common.mk19
-rw-r--r--toolchain/gcc/patches/4.6-linaro/100-uclibc-conf.patch33
-rw-r--r--toolchain/gcc/patches/4.6-linaro/301-missing-execinfo_h.patch11
-rw-r--r--toolchain/gcc/patches/4.6-linaro/302-c99-snprintf.patch11
-rw-r--r--toolchain/gcc/patches/4.6-linaro/305-libmudflap-susv3-legacy.patch47
-rw-r--r--toolchain/gcc/patches/4.6-linaro/600-ubicom_support.patch9368
-rw-r--r--toolchain/gcc/patches/4.6-linaro/810-arm-softfloat-libgcc.patch26
-rw-r--r--toolchain/gcc/patches/4.6-linaro/820-libgcc_pic.patch36
-rw-r--r--toolchain/gcc/patches/4.6-linaro/830-arm_unbreak_armv4t.patch13
-rw-r--r--toolchain/gcc/patches/4.6-linaro/840-armv4_pass_fix-v4bx_to_ld.patch20
-rw-r--r--toolchain/gcc/patches/4.6-linaro/910-mbsd_multi.patch253
-rw-r--r--toolchain/gcc/patches/4.6-linaro/993-arm_insn-opinit-RTX_CODE-fixup.patch15
-rw-r--r--toolchain/gcc/patches/4.6-linaro/999-coldfire.patch10
15 files changed, 9865 insertions, 6 deletions
diff --git a/toolchain/gcc/Config.in b/toolchain/gcc/Config.in
index 7725ddebb..09d381383 100644
--- a/toolchain/gcc/Config.in
+++ b/toolchain/gcc/Config.in
@@ -17,6 +17,9 @@ choice
config GCC_VERSION_4_5_LINARO
bool "gcc 4.5.x with Linaro enhancements"
+ config GCC_VERSION_4_6_LINARO
+ bool "gcc 4.6.x with Linaro enhancements"
+
config GCC_VERSION_LLVM
bool "llvm-gcc 4.2"
depends BROKEN
diff --git a/toolchain/gcc/Config.version b/toolchain/gcc/Config.version
index aee7748f2..450d143cb 100644
--- a/toolchain/gcc/Config.version
+++ b/toolchain/gcc/Config.version
@@ -10,12 +10,16 @@ config GCC_DEFAULT_VERSION_4_5_LINARO
default y if !(GCC_DEFAULT_VERSION)
bool
+config GCC_DEFAULT_VERSION_4_6_LINARO
+ bool
+
config GCC_VERSION
string
default "4.4.6" if GCC_VERSION_4_4_6
default "4.6.1" if GCC_VERSION_4_6_1
default "4.5-linaro" if GCC_VERSION_4_5_LINARO
+ default "4.6-linaro" if GCC_VERSION_4_6_LINARO
default "llvm" if GCC_VERSION_LLVM
default "4.5-linaro"
@@ -29,7 +33,7 @@ config GCC_VERSION_4_5
config GCC_VERSION_4_6
bool
- default y if GCC_VERSION_4_6_1
+ default y if (GCC_VERSION_4_6_1 || GCC_VERSION_4_6_LINARO)
if !TOOLCHAINOPTS
diff --git a/toolchain/gcc/common.mk b/toolchain/gcc/common.mk
index a24cc8bd8..75ad8af6f 100644
--- a/toolchain/gcc/common.mk
+++ b/toolchain/gcc/common.mk
@@ -36,12 +36,21 @@ ifdef CONFIG_GCC_VERSION_LLVM
PKG_SOURCE_SUBDIR:=$(GCC_DIR)
HOST_BUILD_DIR:=$(BUILD_DIR_TOOLCHAIN)/$(GCC_DIR)
else
-ifeq ($(CONFIG_GCC_VERSION),"4.5-linaro")
- PKG_REV:=4.5-2011.08
- PKG_VERSION:=4.5.4
- PKG_SOURCE_URL:=http://launchpad.net/gcc-linaro/4.5/$(PKG_REV)/+download/
+ifeq ($(findstring linaro, $(CONFIG_GCC_VERSION)),linaro)
+ ifeq ($(CONFIG_GCC_VERSION),"4.5-linaro")
+ PKG_REV:=4.5-2011.08
+ PKG_VERSION:=4.5.4
+ PKG_VERSION_MAJOR:=4.5
+ PKG_MD5SUM:=c3374e210209e35ad1ea175223d3605c
+ endif
+ ifeq ($(CONFIG_GCC_VERSION),"4.6-linaro")
+ PKG_REV:=4.6-2011.08
+ PKG_VERSION:=4.6.2
+ PKG_VERSION_MAJOR:=4.6
+ PKG_MD5SUM:=7417cdb33d7b3a18552b2003a98cadfc
+ endif
+ PKG_SOURCE_URL:=http://launchpad.net/gcc-linaro/$(PKG_VERSION_MAJOR)/$(PKG_REV)/+download/
PKG_SOURCE:=$(PKG_NAME)-linaro-$(PKG_REV).tar.bz2
- PKG_MD5SUM:=c3374e210209e35ad1ea175223d3605c
GCC_DIR:=gcc-linaro-$(PKG_REV)
HOST_BUILD_DIR:=$(BUILD_DIR_TOOLCHAIN)/$(GCC_DIR)
else
diff --git a/toolchain/gcc/patches/4.6-linaro/100-uclibc-conf.patch b/toolchain/gcc/patches/4.6-linaro/100-uclibc-conf.patch
new file mode 100644
index 000000000..ff9ad94f6
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/100-uclibc-conf.patch
@@ -0,0 +1,33 @@
+--- a/contrib/regression/objs-gcc.sh
++++ b/contrib/regression/objs-gcc.sh
+@@ -106,6 +106,10 @@ if [ $H_REAL_TARGET = $H_REAL_HOST -a $H
+ then
+ make all-gdb all-dejagnu all-ld || exit 1
+ make install-gdb install-dejagnu install-ld || exit 1
++elif [ $H_REAL_TARGET = $H_REAL_HOST -a $H_REAL_TARGET = i686-pc-linux-uclibc ]
++ then
++ make all-gdb all-dejagnu all-ld || exit 1
++ make install-gdb install-dejagnu install-ld || exit 1
+ elif [ $H_REAL_TARGET = $H_REAL_HOST ] ; then
+ make bootstrap || exit 1
+ make install || exit 1
+--- a/libjava/classpath/ltconfig
++++ b/libjava/classpath/ltconfig
+@@ -603,7 +603,7 @@ host_os=`echo $host | sed 's/^\([^-]*\)-
+
+ # Transform linux* to *-*-linux-gnu*, to support old configure scripts.
+ case $host_os in
+-linux-gnu*) ;;
++linux-gnu*|linux-uclibc*) ;;
+ linux*) host=`echo $host | sed 's/^\(.*-.*-linux\)\(.*\)$/\1-gnu\2/'`
+ esac
+
+@@ -1247,7 +1247,7 @@ linux-gnuoldld* | linux-gnuaout* | linux
+ ;;
+
+ # This must be Linux ELF.
+-linux-gnu*)
++linux*)
+ version_type=linux
+ need_lib_prefix=no
+ need_version=no
diff --git a/toolchain/gcc/patches/4.6-linaro/301-missing-execinfo_h.patch b/toolchain/gcc/patches/4.6-linaro/301-missing-execinfo_h.patch
new file mode 100644
index 000000000..b3f1e68d3
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/301-missing-execinfo_h.patch
@@ -0,0 +1,11 @@
+--- a/boehm-gc/include/gc.h
++++ b/boehm-gc/include/gc.h
+@@ -503,7 +503,7 @@ GC_API GC_PTR GC_malloc_atomic_ignore_of
+ #if defined(__linux__) || defined(__GLIBC__)
+ # include <features.h>
+ # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
+- && !defined(__ia64__)
++ && !defined(__ia64__) && !defined(__UCLIBC__)
+ # ifndef GC_HAVE_BUILTIN_BACKTRACE
+ # define GC_HAVE_BUILTIN_BACKTRACE
+ # endif
diff --git a/toolchain/gcc/patches/4.6-linaro/302-c99-snprintf.patch b/toolchain/gcc/patches/4.6-linaro/302-c99-snprintf.patch
new file mode 100644
index 000000000..eda1854df
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/302-c99-snprintf.patch
@@ -0,0 +1,11 @@
+--- a/libstdc++-v3/include/c_global/cstdio
++++ b/libstdc++-v3/include/c_global/cstdio
+@@ -137,7 +137,7 @@ namespace std
+ using ::vsprintf;
+ } // namespace
+
+-#if _GLIBCXX_USE_C99
++#if _GLIBCXX_USE_C99 || defined __UCLIBC__
+
+ #undef snprintf
+ #undef vfscanf
diff --git a/toolchain/gcc/patches/4.6-linaro/305-libmudflap-susv3-legacy.patch b/toolchain/gcc/patches/4.6-linaro/305-libmudflap-susv3-legacy.patch
new file mode 100644
index 000000000..8e2d15f81
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/305-libmudflap-susv3-legacy.patch
@@ -0,0 +1,47 @@
+--- a/libmudflap/mf-hooks2.c
++++ b/libmudflap/mf-hooks2.c
+@@ -421,7 +421,7 @@ WRAPPER2(void, bzero, void *s, size_t n)
+ {
+ TRACE ("%s\n", __PRETTY_FUNCTION__);
+ MF_VALIDATE_EXTENT(s, n, __MF_CHECK_WRITE, "bzero region");
+- bzero (s, n);
++ memset (s, 0, n);
+ }
+
+
+@@ -431,7 +431,7 @@ WRAPPER2(void, bcopy, const void *src, v
+ TRACE ("%s\n", __PRETTY_FUNCTION__);
+ MF_VALIDATE_EXTENT(src, n, __MF_CHECK_READ, "bcopy src");
+ MF_VALIDATE_EXTENT(dest, n, __MF_CHECK_WRITE, "bcopy dest");
+- bcopy (src, dest, n);
++ memmove (dest, src, n);
+ }
+
+
+@@ -441,7 +441,7 @@ WRAPPER2(int, bcmp, const void *s1, cons
+ TRACE ("%s\n", __PRETTY_FUNCTION__);
+ MF_VALIDATE_EXTENT(s1, n, __MF_CHECK_READ, "bcmp 1st arg");
+ MF_VALIDATE_EXTENT(s2, n, __MF_CHECK_READ, "bcmp 2nd arg");
+- return bcmp (s1, s2, n);
++ return n == 0 ? 0 : memcmp (s1, s2, n);
+ }
+
+
+@@ -450,7 +450,7 @@ WRAPPER2(char *, index, const char *s, i
+ size_t n = strlen (s);
+ TRACE ("%s\n", __PRETTY_FUNCTION__);
+ MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "index region");
+- return index (s, c);
++ return strchr (s, c);
+ }
+
+
+@@ -459,7 +459,7 @@ WRAPPER2(char *, rindex, const char *s,
+ size_t n = strlen (s);
+ TRACE ("%s\n", __PRETTY_FUNCTION__);
+ MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "rindex region");
+- return rindex (s, c);
++ return strrchr (s, c);
+ }
+
+ /* XXX: stpcpy, memccpy */
diff --git a/toolchain/gcc/patches/4.6-linaro/600-ubicom_support.patch b/toolchain/gcc/patches/4.6-linaro/600-ubicom_support.patch
new file mode 100644
index 000000000..8268b5e92
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/600-ubicom_support.patch
@@ -0,0 +1,9368 @@
+--- a/configure
++++ b/configure
+@@ -3608,6 +3608,9 @@ case "${target}" in
+ ip2k-*-*)
+ noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
+ ;;
++ ubicom32-*-*)
++ noconfigdirs="$noconfigdirs target-libffi"
++ ;;
+ *-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu)
+ noconfigdirs="$noconfigdirs target-newlib target-libgloss"
+ ;;
+--- /dev/null
++++ b/gcc/config/ubicom32/constraints.md
+@@ -0,0 +1,149 @@
++; Constraint definitions for Ubicom32
++
++; Copyright (C) 2009 Free Software Foundation, Inc.
++; Contributed by Ubicom, Inc.
++
++; This file is part of GCC.
++
++; GCC is free software; you can redistribute it and/or modify it
++; under the terms of the GNU General Public License as published
++; by the Free Software Foundation; either version 3, or (at your
++; option) any later version.
++
++; GCC is distributed in the hope that it will be useful, but WITHOUT
++; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++; License for more details.
++
++; You should have received a copy of the GNU General Public License
++; along with GCC; see the file COPYING3. If not see
++; <http://www.gnu.org/licenses/>.
++
++(define_register_constraint "a" "ALL_ADDRESS_REGS"
++ "An An register.")
++
++(define_register_constraint "d" "DATA_REGS"
++ "A Dn register.")
++
++(define_register_constraint "h" "ACC_REGS"
++ "An accumulator register.")
++
++(define_register_constraint "l" "ACC_LO_REGS"
++ "An accn_lo register.")
++
++(define_register_constraint "Z" "FDPIC_REG"
++ "The FD-PIC GOT pointer: A0.")
++
++(define_constraint "I"
++ "An 8-bit signed constant value."
++ (and (match_code "const_int")
++ (match_test "(ival >= -128) && (ival <= 127)")))
++
++(define_constraint "Q"
++ "An 8-bit signed constant value represented as unsigned."
++ (and (match_code "const_int")
++ (match_test "(ival >= 0x00) && (ival <= 0xff)")))
++
++(define_constraint "R"
++ "An 8-bit signed constant value represented as unsigned."
++ (and (match_code "const_int")
++ (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))")))
++
++(define_constraint "J"
++ "A 7-bit unsigned constant value."
++ (and (match_code "const_int")
++ (match_test "(ival >= 0) && (ival <= 127)")))
++
++(define_constraint "K"
++ "A 7-bit unsigned constant value shifted << 1."
++ (and (match_code "const_int")
++ (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)")))
++
++(define_constraint "L"
++ "A 7-bit unsigned constant value shifted << 2."
++ (and (match_code "const_int")
++ (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)")))
++
++(define_constraint "M"
++ "A 5-bit unsigned constant value."
++ (and (match_code "const_int")
++ (match_test "(ival >= 0) && (ival <= 31)")))
++
++(define_constraint "N"
++ "A signed 16 bit constant value."
++ (and (match_code "const_int")
++ (match_test "(ival >= -32768) && (ival <= 32767)")))
++
++(define_constraint "O"
++ "An exact bitmask of contiguous 1 bits starting at bit 0."
++ (and (match_code "const_int")
++ (match_test "exact_log2 (ival + 1) != -1")))
++
++(define_constraint "P"
++ "A 7-bit negative constant value shifted << 2."
++ (and (match_code "const_int")
++ (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)")))
++
++(define_constraint "S"
++ "A symbolic reference."
++ (match_code "symbol_ref"))
++
++(define_constraint "Y"
++ "An FD-PIC symbolic reference."
++ (and (match_test "TARGET_FDPIC")
++ (match_test "GET_CODE (op) == UNSPEC")
++ (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT")
++ (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC"))))
++
++(define_memory_constraint "T1"
++ "A memory operand that can be used for .1 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (match_test "GET_MODE (op) == QImode")))
++
++(define_memory_constraint "T2"
++ "A memory operand that can be used for .2 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (match_test "GET_MODE (op) == HImode")))
++
++(define_memory_constraint "T4"
++ "A memory operand that can be used for .4 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (ior (match_test "GET_MODE (op) == SImode")
++ (match_test "GET_MODE (op) == DImode")
++ (match_test "GET_MODE (op) == SFmode"))))
++
++(define_memory_constraint "U1"
++ "An offsettable memory operand that can be used for .1 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (match_test "GET_MODE (op) == QImode")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
++
++(define_memory_constraint "U2"
++ "An offsettable memory operand that can be used for .2 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (match_test "GET_MODE (op) == HImode")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
++
++(define_memory_constraint "U4"
++ "An offsettable memory operand that can be used for .4 instruction."
++ (and (match_test "memory_operand (op, GET_MODE(op))")
++ (ior (match_test "GET_MODE (op) == SImode")
++ (match_test "GET_MODE (op) == DImode")
++ (match_test "GET_MODE (op) == SFmode"))
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
++
+--- /dev/null
++++ b/gcc/config/ubicom32/crti.S
+@@ -0,0 +1,54 @@
++/* Specialized code needed to support construction and destruction of
++ file-scope objects in C++ and Java code, and to support exception handling.
++ Copyright (C) 1999 Free Software Foundation, Inc.
++ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
++
++This file is part of GCC.
++
++GCC is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2, or (at your option)
++any later version.
++
++GCC is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with GCC; see the file COPYING. If not, write to
++the Free Software Foundation, 59 Temple Place - Suite 330,
++Boston, MA 02111-1307, USA. */
++
++/* As a special exception, if you link this library with files
++ compiled with GCC to produce an executable, this does not cause
++ the resulting executable to be covered by the GNU General Public License.
++ This exception does not however invalidate any other reasons why
++ the executable file might be covered by the GNU General Public License. */
++
++/*
++ * This file just supplies function prologues for the .init and .fini
++ * sections. It is linked in before crtbegin.o.
++ */
++ .file "crti.o"
++ .ident "GNU C crti.o"
++
++ .section .init
++ .align 2
++ .globl _init
++ .type _init, @function
++_init:
++ move.4 -4(sp)++, a5
++#ifdef __UBICOM32_FDPIC__
++ move.4 -4(sp)++, a0
++#endif
++
++ .section .fini
++ .align 2
++ .globl _fini
++ .type _fini, @function
++_fini:
++ move.4 -4(sp)++, a5
++#ifdef __UBICOM32_FDPIC__
++ move.4 -4(sp)++, a0
++#endif
+--- /dev/null
++++ b/gcc/config/ubicom32/crtn.S
+@@ -0,0 +1,47 @@
++/* Specialized code needed to support construction and destruction of
++ file-scope objects in C++ and Java code, and to support exception handling.
++ Copyright (C) 1999 Free Software Foundation, Inc.
++ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
++
++This file is part of GCC.
++
++GCC is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2, or (at your option)
++any later version.
++
++GCC is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with GCC; see the file COPYING. If not, write to
++the Free Software Foundation, 59 Temple Place - Suite 330,
++Boston, MA 02111-1307, USA. */
++
++/* As a special exception, if you link this library with files
++ compiled with GCC to produce an executable, this does not cause
++ the resulting executable to be covered by the GNU General Public License.
++ This exception does not however invalidate any other reasons why
++ the executable file might be covered by the GNU General Public License. */
++
++/*
++ * This file supplies function epilogues for the .init and .fini sections.
++ * It is linked in after all other files.
++ */
++
++ .file "crtn.o"
++ .ident "GNU C crtn.o"
++
++ .section .init
++#ifdef __UBICOM32_FDPIC__
++ move.4 a0, (sp)4++
++#endif
++ ret (sp)4++
++
++ .section .fini
++#ifdef __UBICOM32_FDPIC__
++ move.4 a0, (sp)4++
++#endif
++ ret (sp)4++
+--- /dev/null
++++ b/gcc/config/ubicom32/elf.h
+@@ -0,0 +1,29 @@
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC "\
++%{msim:%{!shared:crt0%O%s}} \
++crti%O%s crtbegin%O%s"
++
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
++
++#ifdef __UBICOM32_FDPIC__
++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
++ asm (SECTION_OP); \
++ asm ("move.4 a0, 0(sp);\n\t" \
++ "call a5," USER_LABEL_PREFIX #FUNC ";"); \
++ asm (TEXT_SECTION_ASM_OP);
++#endif
++
++#undef SUBTARGET_DRIVER_SELF_SPECS
++#define SUBTARGET_DRIVER_SELF_SPECS \
++ "%{mfdpic:-msim} "
++
++#define NO_IMPLICIT_EXTERN_C
++
++/*
++ * We need this to compile crtbegin/crtend. This should really be picked
++ * up from elfos.h but at the moment including elfos.h causes other more
++ * serous linker issues.
++ */
++#define INIT_SECTION_ASM_OP "\t.section\t.init"
++#define FINI_SECTION_ASM_OP "\t.section\t.fini"
+--- /dev/null
++++ b/gcc/config/ubicom32/linux.h
+@@ -0,0 +1,80 @@
++/* Definitions of target machine for Ubicom32-uclinux
++
++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
++ 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GCC.
++
++ GCC is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published
++ by the Free Software Foundation; either version 3, or (at your
++ option) any later version.
++
++ GCC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++ License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with GCC; see the file COPYING3. If not see
++ <http://www.gnu.org/licenses/>. */
++
++/* Don't assume anything about the header files. */
++#define NO_IMPLICIT_EXTERN_C
++
++#undef LIB_SPEC
++#define LIB_SPEC \
++ "%{pthread:-lpthread} " \
++ "-lc"
++
++#undef LINK_GCC_C_SEQUENCE_SPEC
++#define LINK_GCC_C_SEQUENCE_SPEC \
++ "%{static:--start-group} %G %L %{static:--end-group} " \
++ "%{!static: %G}"
++
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC \
++ "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \
++ "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}"
++
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC \
++ "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s"
++
++/* taken from linux.h */
++/* The GNU C++ standard library requires that these macros be defined. */
++#undef CPLUSPLUS_CPP_SPEC
++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
++
++#define TARGET_OS_CPP_BUILTINS() \
++ do { \
++ builtin_define_std ("__UBICOM32__"); \
++ builtin_define_std ("__ubicom32__"); \
++ builtin_define ("__gnu_linux__"); \
++ builtin_define_std ("linux"); \
++ builtin_define_std ("unix"); \
++ builtin_assert ("system=linux"); \
++ builtin_assert ("system=unix"); \
++ builtin_assert ("system=posix"); \
++ } while (0)
++
++#define OBJECT_FORMAT_ELF
++
++
++#undef DRIVER_SELF_SPECS
++#define DRIVER_SELF_SPECS \
++ "%{!mno-fdpic:-mfdpic}"
++
++#undef LINK_SPEC
++#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \
++ %{static:-dn -Bstatic} \
++ %{shared:-G -Bdynamic} \
++ %{!shared: %{!static: \
++ %{rdynamic:-export-dynamic} \
++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \
++ %{static}} "
++
++/*
++#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h"
++*/
+--- /dev/null
++++ b/gcc/config/ubicom32/predicates.md
+@@ -0,0 +1,327 @@
++; Predicate definitions for Ubicom32.
++
++; Copyright (C) 2009 Free Software Foundation, Inc.
++; Contributed by Ubicom, Inc.
++
++; This file is part of GCC.
++
++; GCC is free software; you can redistribute it and/or modify it
++; under the terms of the GNU General Public License as published
++; by the Free Software Foundation; either version 3, or (at your
++; option) any later version.
++
++; GCC is distributed in the hope that it will be useful, but WITHOUT
++; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++; License for more details.
++
++; You should have received a copy of the GNU General Public License
++; along with GCC; see the file COPYING3. If not see
++; <http://www.gnu.org/licenses/>.
++
++(define_predicate "ubicom32_move_operand"
++ (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum")
++{
++ if (CONST_INT_P (op))
++ return true;
++
++ if (GET_CODE (op) == CONST_DOUBLE)
++ return true;
++
++ if (GET_CODE (op) == CONST)
++ return memory_address_p (mode, op);
++
++ if (GET_MODE (op) != mode)
++ return false;
++
++ if (MEM_P (op))
++ return memory_address_p (mode, XEXP (op, 0));
++
++ if (GET_CODE (op) == SUBREG) {
++ op = SUBREG_REG (op);
++
++ if (REG_P (op))
++ return true;
++
++ if (! MEM_P (op))
++ return false;
++
++ /* Paradoxical SUBREG. */
++ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op)))
++ return false;
++
++ return memory_address_p (GET_MODE (op), XEXP (op, 0));
++ }
++
++ return register_operand (op, mode);
++})
++
++;; Returns true if OP is either a symbol reference or a sum of a
++;; symbol reference and a constant.
++
++(define_predicate "ubicom32_symbolic_address_operand"
++ (match_code "symbol_ref, label_ref, const")
++{
++ switch (GET_CODE (op))
++ {
++ case SYMBOL_REF:
++ case LABEL_REF:
++ return true;
++
++ case CONST:
++ op = XEXP (op, 0);
++ return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
++ || GET_CODE (XEXP (op, 0)) == LABEL_REF)
++ && CONST_INT_P (XEXP (op, 1)));
++
++ default:
++ return false;
++ }
++})
++
++;; Return true if operand is the uClinux FD-PIC register.
++
++(define_predicate "ubicom32_fdpic_operand"
++ (match_code "reg")
++{
++ if (! TARGET_FDPIC)
++ return false;
++
++ if (!REG_P (op))
++ return false;
++
++ if (GET_MODE (op) != mode && mode != VOIDmode)
++ return false;
++
++ if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER)
++ return false;
++
++ return true;
++})
++
++(define_predicate "ubicom32_fdpic_got_offset_operand"
++ (match_code "unspec")
++{
++ if (! TARGET_FDPIC)
++ return false;
++
++ if (GET_CODE (op) != UNSPEC)
++ return false;
++
++ if (XINT (op, 1) != UNSPEC_FDPIC_GOT
++ && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC)
++ return false;
++
++ return true;
++})
++
++(define_predicate "ubicom32_arith_operand"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_move_operand (op, mode)
++ && ! ubicom32_symbolic_address_operand (op, mode)
++ && (! CONST_INT_P (op)
++ || satisfies_constraint_I (op)));
++})
++
++(define_predicate "ubicom32_arith_operand_dot1"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_move_operand (op, mode)
++ && ! ubicom32_symbolic_address_operand (op, mode)
++ && (! CONST_INT_P (op)
++ || satisfies_constraint_Q (op)));
++})
++
++(define_predicate "ubicom32_arith_operand_dot2"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_move_operand (op, mode)
++ && ! ubicom32_symbolic_address_operand (op, mode)
++ && (! CONST_INT_P (op)
++ || satisfies_constraint_R (op)));
++})
++
++(define_predicate "ubicom32_compare_operand"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_move_operand (op, mode)
++ && ! ubicom32_symbolic_address_operand (op, mode)
++ && (! CONST_INT_P (op)
++ || satisfies_constraint_N (op)));
++})
++
++(define_predicate "ubicom32_compare_operator"
++ (match_code "compare"))
++
++(define_predicate "ubicom32_and_or_si3_operand"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_arith_operand (op, mode)
++ || (CONST_INT_P (op)
++ && ((exact_log2 (INTVAL (op) + 1) != -1
++ && exact_log2 (INTVAL (op) + 1) <= 31)
++ || (exact_log2 (INTVAL (op)) != -1
++ && exact_log2 (INTVAL (op)) <= 31)
++ || (exact_log2 (~INTVAL (op)) != -1
++ && exact_log2 (~INTVAL (op)) <= 31))));
++})
++
++(define_predicate "ubicom32_and_or_hi3_operand"
++ (match_code "subreg, reg, const_int, lo_sum, mem")
++{
++ return (ubicom32_arith_operand (op, mode)
++ || (CONST_INT_P (op)
++ && exact_log2 (INTVAL (op) + 1) != -1
++ && exact_log2 (INTVAL (op) + 1) <= 15));
++})
++
++(define_predicate "ubicom32_mem_or_address_register_operand"
++ (match_code "subreg, reg, mem")
++{
++ unsigned int regno;
++
++ if (MEM_P (op)
++ && memory_operand (op, mode))
++ return true;
++
++ if (REG_P (op))
++ regno = REGNO (op);
++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
++ {
++ int offset;
++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
++ else
++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
++ GET_MODE (SUBREG_REG (op)),
++ SUBREG_BYTE (op),
++ GET_MODE (op));
++ regno = REGNO (SUBREG_REG (op)) + offset;
++ }
++ else
++ return false;
++
++ return (regno >= FIRST_PSEUDO_REGISTER
++ || REGNO_REG_CLASS (regno) == FDPIC_REG
++ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
++})
++
++(define_predicate "ubicom32_data_register_operand"
++ (match_code "subreg, reg")
++{
++ unsigned int regno;
++
++ if (REG_P (op))
++ regno = REGNO (op);
++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
++ {
++ int offset;
++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
++ else
++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
++ GET_MODE (SUBREG_REG (op)),
++ SUBREG_BYTE (op),
++ GET_MODE (op));
++ regno = REGNO (SUBREG_REG (op)) + offset;
++ }
++ else
++ return false;
++
++ return ((regno >= FIRST_PSEUDO_REGISTER
++ && regno != REGNO (virtual_stack_vars_rtx))
++ || REGNO_REG_CLASS (regno) == DATA_REGS);
++})
++
++(define_predicate "ubicom32_address_register_operand"
++ (match_code "subreg, reg")
++{
++ unsigned int regno;
++
++ if (REG_P (op))
++ regno = REGNO (op);
++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
++ {
++ int offset;
++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
++ else
++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
++ GET_MODE (SUBREG_REG (op)),
++ SUBREG_BYTE (op),
++ GET_MODE (op));
++ regno = REGNO (SUBREG_REG (op)) + offset;
++ }
++ else
++ return false;
++
++ return (regno >= FIRST_PSEUDO_REGISTER
++ || REGNO_REG_CLASS (regno) == FDPIC_REG
++ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
++})
++
++(define_predicate "ubicom32_acc_lo_register_operand"
++ (match_code "subreg, reg")
++{
++ unsigned int regno;
++
++ if (REG_P (op))
++ regno = REGNO (op);
++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
++ {
++ int offset;
++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
++ else
++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
++ GET_MODE (SUBREG_REG (op)),
++ SUBREG_BYTE (op),
++ GET_MODE (op));
++ regno = REGNO (SUBREG_REG (op)) + offset;
++ }
++ else
++ return false;
++
++ return ((regno >= FIRST_PSEUDO_REGISTER
++ && regno != REGNO (virtual_stack_vars_rtx))
++ || REGNO_REG_CLASS (regno) == ACC_LO_REGS);
++})
++
++(define_predicate "ubicom32_acc_hi_register_operand"
++ (match_code "subreg, reg")
++{
++ unsigned int regno;
++
++ if (REG_P (op))
++ regno = REGNO (op);
++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
++ {
++ int offset;
++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
++ else
++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
++ GET_MODE (SUBREG_REG (op)),
++ SUBREG_BYTE (op),
++ GET_MODE (op));
++ regno = REGNO (SUBREG_REG (op)) + offset;
++ }
++ else
++ return false;
++
++ return ((regno >= FIRST_PSEUDO_REGISTER
++ && regno != REGNO (virtual_stack_vars_rtx))
++ || REGNO_REG_CLASS (regno) == ACC_REGS);
++})
++
++(define_predicate "ubicom32_call_address_operand"
++ (match_code "symbol_ref, subreg, reg")
++{
++ return (GET_CODE (op) == SYMBOL_REF || REG_P (op));
++})
++
++(define_special_predicate "ubicom32_cc_register_operand"
++ (and (match_code "reg")
++ (match_test "REGNO (op) == CC_REGNUM")))
++
+--- /dev/null
++++ b/gcc/config/ubicom32/t-ubicom32
+@@ -0,0 +1,52 @@
++# Name of assembly file containing libgcc1 functions.
++# This entry must be present, but it can be empty if the target does
++# not need any assembler functions to support its code generation.
++CROSS_LIBGCC1 =
++
++# Alternatively if assembler functions *are* needed then define the
++# entries below:
++# CROSS_LIBGCC1 = libgcc1-asm.a
++
++LIB2FUNCS_EXTRA = \
++ $(srcdir)/config/udivmodsi4.c \
++ $(srcdir)/config/divmod.c \
++ $(srcdir)/config/udivmod.c
++
++# If any special flags are necessary when building libgcc2 put them here.
++#
++# TARGET_LIBGCC2_CFLAGS =
++
++# We want fine grained libraries, so use the new code to build the
++# floating point emulation libraries.
++FPBIT = fp-bit.c
++DPBIT = dp-bit.c
++
++fp-bit.c: $(srcdir)/config/fp-bit.c
++ echo '#define FLOAT' > fp-bit.c
++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
++
++dp-bit.c: $(srcdir)/config/fp-bit.c
++ cat $(srcdir)/config/fp-bit.c > dp-bit.c
++
++# Commented out to speed up compiler development!
++#
++# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4
++# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4
++
++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
++MULTILIB_OPTIONS += mfdpic
++MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi
++MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore
++
++# Assemble startup files.
++$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES)
++ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S
++
++$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES)
++ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S
++
++# these parts are required because uClibc ldso needs them to link.
++# they are not in the specfile so they will not be included automatically.
++EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o
+--- /dev/null
++++ b/gcc/config/ubicom32/t-ubicom32-linux
+@@ -0,0 +1,35 @@
++# Name of assembly file containing libgcc1 functions.
++# This entry must be present, but it can be empty if the target does
++# not need any assembler functions to support its code generation.
++CROSS_LIBGCC1 =
++
++# Alternatively if assembler functions *are* needed then define the
++# entries below:
++# CROSS_LIBGCC1 = libgcc1-asm.a
++
++LIB2FUNCS_EXTRA = \
++ $(srcdir)/config/udivmodsi4.c \
++ $(srcdir)/config/divmod.c \
++ $(srcdir)/config/udivmod.c
++
++# If any special flags are necessary when building libgcc2 put them here.
++#
++# TARGET_LIBGCC2_CFLAGS =
++
++# We want fine grained libraries, so use the new code to build the
++# floating point emulation libraries.
++FPBIT = fp-bit.c
++DPBIT = dp-bit.c
++
++fp-bit.c: $(srcdir)/config/fp-bit.c
++ echo '#define FLOAT' > fp-bit.c
++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
++
++dp-bit.c: $(srcdir)/config/fp-bit.c
++ cat $(srcdir)/config/fp-bit.c > dp-bit.c
++
++# We only support v3 and v4 ISAs for uClinux.
++
++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
++
++#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o
+--- /dev/null
++++ b/gcc/config/ubicom32/t-ubicom32-uclinux
+@@ -0,0 +1,35 @@
++# Name of assembly file containing libgcc1 functions.
++# This entry must be present, but it can be empty if the target does
++# not need any assembler functions to support its code generation.
++CROSS_LIBGCC1 =
++
++# Alternatively if assembler functions *are* needed then define the
++# entries below:
++# CROSS_LIBGCC1 = libgcc1-asm.a
++
++LIB2FUNCS_EXTRA = \
++ $(srcdir)/config/udivmodsi4.c \
++ $(srcdir)/config/divmod.c \
++ $(srcdir)/config/udivmod.c
++
++# If any special flags are necessary when building libgcc2 put them here.
++#
++# TARGET_LIBGCC2_CFLAGS =
++
++# We want fine grained libraries, so use the new code to build the
++# floating point emulation libraries.
++FPBIT = fp-bit.c
++DPBIT = dp-bit.c
++
++fp-bit.c: $(srcdir)/config/fp-bit.c
++ echo '#define FLOAT' > fp-bit.c
++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
++
++dp-bit.c: $(srcdir)/config/fp-bit.c
++ cat $(srcdir)/config/fp-bit.c > dp-bit.c
++
++# We only support v3 and v4 ISAs for uClinux.
++
++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
++
++EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32-modes.def
+@@ -0,0 +1,30 @@
++/* Definitions of target machine for GNU compiler, Ubicom32 architecture.
++ Copyright (C) 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GCC.
++
++ GCC is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published
++ by the Free Software Foundation; either version 3, or (at your
++ option) any later version.
++
++ GCC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++ License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with GCC; see the file COPYING3. If not see
++ <http://www.gnu.org/licenses/>. */
++
++/* Some insns set all condition code flags, some only set the Z and N flags, and
++ some only set the Z flag. */
++
++CC_MODE (CCW);
++CC_MODE (CCWZN);
++CC_MODE (CCWZ);
++CC_MODE (CCS);
++CC_MODE (CCSZN);
++CC_MODE (CCSZ);
++
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32-protos.h
+@@ -0,0 +1,84 @@
++/* Function prototypes for Ubicom IP3000.
++
++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
++ 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GNU CC.
++
++ GNU CC is free software; you can redistribute it and/or modify it under
++ the terms of the GNU General Public License as published by the Free
++ Software Foundation; either version 2, or (at your option) any later
++ version.
++
++ GNU CC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ for more details.
++
++ You should have received a copy of the GNU General Public License along
++ with GNU CC; see the file COPYING. If not, write to the Free Software
++ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
++
++#ifdef RTX_CODE
++
++#ifdef TREE_CODE
++extern void ubicom32_va_start (tree, rtx);
++#endif /* TREE_CODE */
++
++extern void ubicom32_print_operand (FILE *, rtx, int);
++extern void ubicom32_print_operand_address (FILE *, rtx);
++
++extern void ubicom32_conditional_register_usage (void);
++extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class);
++extern int ubicom32_regno_ok_for_index_p (int, int);
++extern void ubicom32_expand_movsi (rtx *);
++extern void ubicom32_expand_addsi3 (rtx *);
++extern int ubicom32_emit_mult_sequence (rtx *);
++extern void ubicom32_emit_move_const_int (rtx, rtx);
++extern bool ubicom32_legitimate_constant_p (rtx);
++extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int);
++extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode);
++extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int);
++extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1);
++extern int ubicom32_mode_dependent_address_p (rtx);
++extern void ubicom32_output_cond_jump (rtx, rtx, rtx);
++extern void ubicom32_expand_eh_return (rtx *);
++extern void ubicom32_expand_call_fdpic (rtx *);
++extern void ubicom32_expand_call_value_fdpic (rtx *);
++extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx);
++extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx);
++extern int ubicom32_shiftable_const_int (int);
++#endif /* RTX_CODE */
++
++#ifdef TREE_CODE
++extern void init_cumulative_args (CUMULATIVE_ARGS *cum,
++ tree fntype,
++ struct rtx_def *libname,
++ int indirect);
++extern struct rtx_def *function_arg (CUMULATIVE_ARGS *,
++ enum machine_mode, tree, int);
++extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *,
++ enum machine_mode,
++ tree, int);
++extern int function_arg_partial_nregs (CUMULATIVE_ARGS *,
++ enum machine_mode, tree, int);
++extern struct rtx_def *ubicom32_va_arg (tree, tree);
++extern int ubicom32_reg_parm_stack_space (tree);
++#endif /* TREE_CODE */
++
++extern struct rtx_def * ubicom32_builtin_saveregs (void);
++extern void asm_file_start (FILE *);
++extern void ubicom32_expand_prologue (void);
++extern void ubicom32_expand_epilogue (void);
++extern int ubicom32_initial_elimination_offset (int, int);
++extern int ubicom32_regno_ok_for_base_p (int, int);
++extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode);
++extern int ubicom32_can_use_return_insn_p (void);
++extern rtx ubicom32_return_addr_rtx (int, rtx);
++extern void ubicom32_optimization_options (int, int);
++extern void ubicom32_override_options (void);
++extern bool ubicom32_match_cc_mode (rtx, enum machine_mode);
++
++extern int ubicom32_reorg_completed;
++
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32.c
+@@ -0,0 +1,2881 @@
++/* Subroutines for insn-output.c for Ubicom32
++
++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
++ 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GCC.
++
++ GCC is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published
++ by the Free Software Foundation; either version 3, or (at your
++ option) any later version.
++
++ GCC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++ License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with GCC; see the file COPYING3. If not see
++ <http://www.gnu.org/licenses/>. */
++
++#include "config.h"
++#include "system.h"
++#include "coretypes.h"
++#include "tm.h"
++#include "rtl.h"
++#include "tree.h"
++#include "regs.h"
++#include "hard-reg-set.h"
++#include "real.h"
++#include "insn-config.h"
++#include "conditions.h"
++#include "insn-flags.h"
++#include "output.h"
++#include "insn-attr.h"
++#include "insn-codes.h"
++#include "flags.h"
++#include "recog.h"
++#include "expr.h"
++#include "function.h"
++#include "obstack.h"
++#include "toplev.h"
++#include "tm_p.h"
++#include "tm-constrs.h"
++#include "basic-block.h"
++#include "integrate.h"
++#include "target.h"
++#include "target-def.h"
++#include "reload.h"
++#include "df.h"
++#include "langhooks.h"
++#include "optabs.h"
++
++static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
++static void ubicom32_layout_frame (void);
++static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT);
++static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT);
++static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed);
++static bool ubicom32_fixed_condition_code_regs (unsigned int *,
++ unsigned int *);
++static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode,
++ enum machine_mode);
++static int ubicom32_naked_function_p (void);
++static void ubicom32_machine_dependent_reorg (void);
++static bool ubicom32_assemble_integer (rtx, unsigned int, int);
++static void ubicom32_asm_init_sections (void);
++static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree,
++ bool);
++static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
++ enum machine_mode mode, const_tree type,
++ bool named ATTRIBUTE_UNUSED);
++static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
++ enum machine_mode mode, const_tree type,
++ bool named ATTRIBUTE_UNUSED);
++
++static bool ubicom32_return_in_memory (const_tree type,
++ const_tree fntype ATTRIBUTE_UNUSED);
++static bool ubicom32_is_base_reg (rtx, int);
++static void ubicom32_init_builtins (void);
++static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
++static tree ubicom32_fold_builtin (tree, tree, bool);
++static int ubicom32_get_valid_offset_mask (enum machine_mode);
++static bool ubicom32_cannot_force_const_mem (rtx);
++
++/* Case values threshold */
++int ubicom32_case_values_threshold = 6;
++
++/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
++int ubicom32_v3 = 1;
++
++/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
++int ubicom32_v4 = 1;
++
++/* Valid attributes:
++ naked - don't generate function prologue/epilogue and `ret' command. */
++const struct attribute_spec ubicom32_attribute_table[] =
++{
++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
++ { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute },
++ { NULL, 0, 0, false, false, false, NULL }
++};
++
++#undef TARGET_ASM_FUNCTION_PROLOGUE
++#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue
++
++#undef TARGET_ASM_FUNCTION_EPILOGUE
++#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue
++
++#undef TARGET_ATTRIBUTE_TABLE
++#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table
++
++/* All addresses cost the same amount. */
++#undef TARGET_ADDRESS_COST
++#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
++
++#undef TARGET_RTX_COSTS
++#define TARGET_RTX_COSTS ubicom32_rtx_costs
++
++#undef TARGET_FIXED_CONDITION_CODE_REGS
++#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs
++
++#undef TARGET_CC_MODES_COMPATIBLE
++#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible
++
++#undef TARGET_MACHINE_DEPENDENT_REORG
++#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg
++
++#undef TARGET_ASM_INTEGER
++#define TARGET_ASM_INTEGER ubicom32_assemble_integer
++
++#undef TARGET_ASM_INIT_SECTIONS
++#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections
++
++#undef TARGET_ARG_PARTIAL_BYTES
++#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes
++
++#undef TARGET_PASS_BY_REFERENCE
++#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference
++
++#undef TARGET_CALLEE_COPIES
++#define TARGET_CALLEE_COPIES ubicom32_callee_copies
++
++#undef TARGET_RETURN_IN_MEMORY
++#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory
++
++#undef TARGET_INIT_BUILTINS
++#define TARGET_INIT_BUILTINS ubicom32_init_builtins
++
++#undef TARGET_EXPAND_BUILTIN
++#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin
++
++#undef TARGET_FOLD_BUILTIN
++#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin
++
++#undef TARGET_CANNOT_FORCE_CONST_MEM
++#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem
++
++struct gcc_target targetm = TARGET_INITIALIZER;
++
++static char save_regs[FIRST_PSEUDO_REGISTER];
++static int nregs;
++static int frame_size;
++int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */
++int ubicom32_can_use_calli_to_ret;
++
++#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT)
++#define ROUND_CALL_BLOCK_SIZE(BYTES) \
++ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1))
++
++/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
++ must report the mode of the memory reference from PRINT_OPERAND to
++ PRINT_OPERAND_ADDRESS. */
++enum machine_mode output_memory_reference_mode;
++
++/* Flag for some split insns from the ubicom32.md. */
++int ubicom32_reorg_completed;
++
++enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] =
++{
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ DATA_REGS,
++ FDPIC_REG,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ADDRESS_REGS,
++ ACC_REGS,
++ ACC_LO_REGS,
++ ACC_REGS,
++ ACC_LO_REGS,
++ SOURCE3_REG,
++ ADDRESS_REGS,
++ NO_REGS, /* CC_REG must be NO_REGS */
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS,
++ SPECIAL_REGS
++};
++
++rtx ubicom32_compare_op0;
++rtx ubicom32_compare_op1;
++
++/* Handle command line option overrides. */
++
++void
++ubicom32_override_options (void)
++{
++ flag_pic = 0;
++
++ if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) {
++ /* If we have a version 1 architecture then we want to avoid using jump
++ tables. */
++ ubicom32_case_values_threshold = 30000;
++ ubicom32_v3 = 0;
++ ubicom32_v4 = 0;
++ } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) {
++ ubicom32_v3 = 0;
++ ubicom32_v4 = 0;
++ } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) {
++ ubicom32_v3 = 1;
++ ubicom32_v4 = 0;
++ } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) {
++ ubicom32_v3 = 1;
++ ubicom32_v4 = 1;
++ }
++
++ /* There is no single unaligned SI op for PIC code. Sometimes we
++ need to use ".4byte" and sometimes we need to use ".picptr".
++ See ubicom32_assemble_integer for details. */
++ if (TARGET_FDPIC)
++ targetm.asm_out.unaligned_op.si = 0;
++}
++
++void
++ubicom32_conditional_register_usage (void)
++{
++ /* If we're using the old ipOS ABI we need to make D10 through D13
++ caller-clobbered. */
++ if (TARGET_IPOS_ABI)
++ {
++ call_used_regs[D10_REGNUM] = 1;
++ call_used_regs[D11_REGNUM] = 1;
++ call_used_regs[D12_REGNUM] = 1;
++ call_used_regs[D13_REGNUM] = 1;
++ }
++}
++
++/* We have some number of optimizations that don't really work for the Ubicom32
++ architecture so we deal with them here. */
++
++void
++ubicom32_optimization_options (int level ATTRIBUTE_UNUSED,
++ int size ATTRIBUTE_UNUSED)
++{
++ /* The tree IVOPTs pass seems to do really bad things for the Ubicom32
++ architecture - it tends to turn things that would happily use pre/post
++ increment/decrement into operations involving unecessary loop
++ indicies. */
++ flag_ivopts = 0;
++
++ /* We have problems where DSE at the RTL level misses partial stores
++ to the stack. For now we disable it to avoid this. */
++ flag_dse = 0;
++}
++
++/* Print operand X using operand code CODE to assembly language output file
++ FILE. */
++
++void
++ubicom32_print_operand (FILE *file, rtx x, int code)
++{
++ switch (code)
++ {
++ case 'A':
++ /* Identify the correct accumulator to use. */
++ if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM)
++ fprintf (file, "acc0");
++ else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM)
++ fprintf (file, "acc1");
++ else
++ abort ();
++ break;
++
++ case 'b':
++ case 'B':
++ {
++ enum machine_mode mode;
++
++ mode = GET_MODE (XEXP (x, 0));
++
++ /* These are normal and reversed branches. */
++ switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
++ {
++ case NE:
++ fprintf (file, "ne");
++ break;
++
++ case EQ:
++ fprintf (file, "eq");
++ break;
++
++ case GE:
++ if (mode == CCSZNmode || mode == CCWZNmode)
++ fprintf (file, "pl");
++ else
++ fprintf (file, "ge");
++ break;
++
++ case GT:
++ fprintf (file, "gt");
++ break;
++
++ case LE:
++ fprintf (file, "le");
++ break;
++
++ case LT:
++ if (mode == CCSZNmode || mode == CCWZNmode)
++ fprintf (file, "mi");
++ else
++ fprintf (file, "lt");
++ break;
++
++ case GEU:
++ fprintf (file, "cs");
++ break;
++
++ case GTU:
++ fprintf (file, "hi");
++ break;
++
++ case LEU:
++ fprintf (file, "ls");
++ break;
++
++ case LTU:
++ fprintf (file, "cc");
++ break;
++
++ default:
++ abort ();
++ }
++ }
++ break;
++
++ case 'C':
++ /* This is used for the operand to a call instruction;
++ if it's a REG, enclose it in parens, else output
++ the operand normally. */
++ if (REG_P (x))
++ {
++ fputc ('(', file);
++ ubicom32_print_operand (file, x, 0);
++ fputc (')', file);
++ }
++ else
++ ubicom32_print_operand (file, x, 0);
++ break;
++
++ case 'd':
++ /* Bit operations we need bit numbers. */
++ fprintf (file, "%d", exact_log2 (INTVAL (x)));
++ break;
++
++ case 'D':
++ /* Bit operations we need bit numbers. */
++ fprintf (file, "%d", exact_log2 (~ INTVAL (x)));
++ break;
++
++ case 'E':
++ /* For lea, which we use to add address registers.
++ We don't want the '#' on a constant. */
++ if (CONST_INT_P (x))
++ {
++ fprintf (file, "%ld", INTVAL (x));
++ break;
++ }
++ /* FALL THROUGH */
++
++ default:
++ switch (GET_CODE (x))
++ {
++ case MEM:
++ output_memory_reference_mode = GET_MODE (x);
++ output_address (XEXP (x, 0));
++ break;
++
++ case PLUS:
++ output_address (x);
++ break;
++
++ case REG:
++ fprintf (file, "%s", reg_names[REGNO (x)]);
++ break;
++
++ case SUBREG:
++ fprintf (file, "%s", reg_names[subreg_regno (x)]);
++ break;
++
++ /* This will only be single precision.... */
++ case CONST_DOUBLE:
++ {
++ unsigned long val;
++ REAL_VALUE_TYPE rv;
++
++ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
++ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
++ fprintf (file, "0x%lx", val);
++ break;
++ }
++
++ case CONST_INT:
++ case SYMBOL_REF:
++ case CONST:
++ case LABEL_REF:
++ case CODE_LABEL:
++ case LO_SUM:
++ ubicom32_print_operand_address (file, x);
++ break;
++
++ case HIGH:
++ fprintf (file, "#%%hi(");
++ ubicom32_print_operand_address (file, XEXP (x, 0));
++ fprintf (file, ")");
++ break;
++
++ case UNSPEC:
++ switch (XINT (x, 1))
++ {
++ case UNSPEC_FDPIC_GOT:
++ fprintf (file, "#%%got_lo(");
++ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
++ fprintf (file, ")");
++ break;
++
++ case UNSPEC_FDPIC_GOT_FUNCDESC:
++ fprintf (file, "#%%got_funcdesc_lo(");
++ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
++ fprintf (file, ")");
++ break;
++
++ default:
++ abort ();
++ }
++ break;
++
++ default:
++ abort ();
++ }
++ break;
++ }
++}
++
++/* Output assembly language output for the address ADDR to FILE. */
++
++void
++ubicom32_print_operand_address (FILE *file, rtx addr)
++{
++ switch (GET_CODE (addr))
++ {
++ case POST_INC:
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode));
++ break;
++
++ case PRE_INC:
++ fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode));
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "++");
++ break;
++
++ case POST_DEC:
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode));
++ break;
++
++ case PRE_DEC:
++ fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode));
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "++");
++ break;
++
++ case POST_MODIFY:
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1)));
++ break;
++
++ case PRE_MODIFY:
++ fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1)));
++ ubicom32_print_operand_address (file, XEXP (addr, 0));
++ fprintf (file, "++");
++ break;
++
++ case REG:
++ fputc ('(', file);
++ fprintf (file, "%s", reg_names[REGNO (addr)]);
++ fputc (')', file);
++ break;
++
++ case PLUS:
++ {
++ rtx base = XEXP (addr, 0);
++ rtx index = XEXP (addr, 1);
++
++ /* Switch around addresses of the form index * scaling + base. */
++ if (! ubicom32_is_base_reg (base, 1))
++ {
++ rtx tmp = base;
++ base = index;
++ index = tmp;
++ }
++
++ if (CONST_INT_P (index))
++ {
++ fprintf (file, "%ld", INTVAL (index));
++ fputc ('(', file);
++ fputs (reg_names[REGNO (base)], file);
++ }
++ else if (GET_CODE (index) == MULT
++ || REG_P (index))
++ {
++ if (GET_CODE (index) == MULT)
++ index = XEXP (index, 0);
++ fputc ('(', file);
++ fputs (reg_names[REGNO (base)], file);
++ fputc (',', file);
++ fputs (reg_names[REGNO (index)], file);
++ }
++ else
++ abort ();
++
++ fputc (')', file);
++ break;
++ }
++
++ case LO_SUM:
++ fprintf (file, "%%lo(");
++ ubicom32_print_operand (file, XEXP (addr, 1), 'L');
++ fprintf (file, ")(");
++ ubicom32_print_operand (file, XEXP (addr, 0), 0);
++ fprintf (file, ")");
++ break;
++
++ case CONST_INT:
++ fputc ('#', file);
++ output_addr_const (file, addr);
++ break;
++
++ default:
++ output_addr_const (file, addr);
++ break;
++ }
++}
++
++/* X and Y are two things to compare using CODE. Emit the compare insn and
++ return the rtx for the cc reg in the proper mode. */
++
++rtx
++ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
++{
++ enum machine_mode mode = SELECT_CC_MODE (code, x, y);
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (mode, CC_REGNUM);
++
++ emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
++ gen_rtx_COMPARE (mode, x, y)));
++
++ return cc_reg;
++}
++
++/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
++ return the mode to be used for the comparison. */
++
++enum machine_mode
++ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y)
++{
++ /* Is this a short compare? */
++ if (GET_MODE (x) == QImode
++ || GET_MODE (x) == HImode
++ || GET_MODE (y) == QImode
++ || GET_MODE (y) == HImode)
++ {
++ switch (op)
++ {
++ case EQ :
++ case NE :
++ return CCSZmode;
++
++ case GE:
++ case LT:
++ if (y == const0_rtx)
++ return CCSZNmode;
++
++ default :
++ return CCSmode;
++ }
++ }
++
++ /* We have a word compare. */
++ switch (op)
++ {
++ case EQ :
++ case NE :
++ return CCWZmode;
++
++ case GE :
++ case LT :
++ if (y == const0_rtx)
++ return CCWZNmode;
++
++ default :
++ return CCWmode;
++ }
++}
++
++/* Return TRUE or FALSE depending on whether the first SET in INSN
++ has source and destination with matching CC modes, and that the
++ CC mode is at least as constrained as REQ_MODE. */
++bool
++ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode)
++{
++ rtx set;
++ enum machine_mode set_mode;
++
++ set = PATTERN (insn);
++ if (GET_CODE (set) == PARALLEL)
++ set = XVECEXP (set, 0, 0);
++ gcc_assert (GET_CODE (set) == SET);
++ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
++
++ /* SET_MODE is the mode we have in the instruction. This must either
++ be the same or less restrictive that the required mode REQ_MODE. */
++ set_mode = GET_MODE (SET_DEST (set));
++
++ switch (req_mode)
++ {
++ case CCSZmode:
++ if (set_mode != CCSZmode)
++ return 0;
++ break;
++
++ case CCSZNmode:
++ if (set_mode != CCSZmode
++ && set_mode != CCSZNmode)
++ return 0;
++ break;
++
++ case CCSmode:
++ if (set_mode != CCSmode
++ && set_mode != CCSZmode
++ && set_mode != CCSZNmode)
++ return 0;
++ break;
++
++ case CCWZmode:
++ if (set_mode != CCWZmode)
++ return 0;
++ break;
++
++ case CCWZNmode:
++ if (set_mode != CCWZmode
++ && set_mode != CCWZNmode)
++ return 0;
++ break;
++
++ case CCWmode:
++ if (set_mode != CCWmode
++ && set_mode != CCWZmode
++ && set_mode != CCWZNmode)
++ return 0;
++ break;
++
++ default:
++ gcc_unreachable ();
++ }
++
++ return (GET_MODE (SET_SRC (set)) == set_mode);
++}
++
++/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
++ that we can implement more efficiently. */
++
++void
++ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1)
++{
++ /* If we have a REG and a MEM then compare the MEM with the REG and not
++ the other way round. */
++ if (REG_P (*op0) && MEM_P (*op1))
++ {
++ rtx tem = *op0;
++ *op0 = *op1;
++ *op1 = tem;
++ *code = swap_condition (*code);
++ return;
++ }
++
++ /* If we have a REG and a CONST_INT then we may want to reverse things
++ if the constant can be represented as an "I" constraint. */
++ if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1))
++ {
++ rtx tem = *op0;
++ *op0 = *op1;
++ *op1 = tem;
++ *code = swap_condition (*code);
++ return;
++ }
++}
++
++/* Return the fixed registers used for condition codes. */
++
++static bool
++ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
++{
++ *p1 = CC_REGNUM;
++ *p2 = INVALID_REGNUM;
++
++ return true;
++}
++
++/* If two condition code modes are compatible, return a condition code
++ mode which is compatible with both. Otherwise, return
++ VOIDmode. */
++
++static enum machine_mode
++ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
++{
++ if (m1 == m2)
++ return m1;
++
++ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
++ return VOIDmode;
++
++ switch (m1)
++ {
++ case CCWmode:
++ if (m2 == CCWZNmode || m2 == CCWZmode)
++ return m1;
++
++ return VOIDmode;
++
++ case CCWZNmode:
++ if (m2 == CCWmode)
++ return m2;
++
++ if (m2 == CCWZmode)
++ return m1;
++
++ return VOIDmode;
++
++ case CCWZmode:
++ if (m2 == CCWmode || m2 == CCWZNmode)
++ return m2;
++
++ return VOIDmode;
++
++ case CCSmode:
++ if (m2 == CCSZNmode || m2 == CCSZmode)
++ return m1;
++
++ return VOIDmode;
++
++ case CCSZNmode:
++ if (m2 == CCSmode)
++ return m2;
++
++ if (m2 == CCSZmode)
++ return m1;
++
++ return VOIDmode;
++
++ case CCSZmode:
++ if (m2 == CCSmode || m2 == CCSZNmode)
++ return m2;
++
++ return VOIDmode;
++
++ default:
++ gcc_unreachable ();
++ }
++}
++
++static rtx
++ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg)
++{
++ int unspec;
++ rtx got_offs;
++ rtx got_offs_scaled;
++ rtx plus_scaled;
++ rtx tmp;
++ rtx new_rtx;
++
++ gcc_assert (reg != 0);
++
++ if (GET_CODE (orig) == SYMBOL_REF
++ && SYMBOL_REF_FUNCTION_P (orig))
++ unspec = UNSPEC_FDPIC_GOT_FUNCDESC;
++ else
++ unspec = UNSPEC_FDPIC_GOT;
++
++ got_offs = gen_reg_rtx (SImode);
++ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec);
++ emit_move_insn (got_offs, tmp);
++
++ got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4));
++ plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled);
++ new_rtx = gen_const_mem (Pmode, plus_scaled);
++ emit_move_insn (reg, new_rtx);
++
++ return reg;
++}
++
++static rtx
++ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg)
++{
++ rtx addr = orig;
++ rtx new_rtx = orig;
++
++ if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
++ {
++ rtx base;
++
++ if (GET_CODE (addr) == CONST)
++ {
++ addr = XEXP (addr, 0);
++ gcc_assert (GET_CODE (addr) == PLUS);
++ }
++
++ base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg);
++ return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1));
++ }
++
++ return new_rtx;
++}
++
++/* Code generation. */
++
++void
++ubicom32_expand_movsi (rtx *operands)
++{
++ if (GET_CODE (operands[1]) == SYMBOL_REF
++ || (GET_CODE (operands[1]) == CONST
++ && GET_CODE (XEXP (operands[1], 0)) == PLUS
++ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
++ || CONSTANT_ADDRESS_P (operands[1]))
++ {
++ if (TARGET_FDPIC)
++ {
++ rtx tmp;
++ rtx fdpic_reg;
++
++ gcc_assert (can_create_pseudo_p ());
++ tmp = gen_reg_rtx (Pmode);
++ fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
++ if (GET_CODE (operands[1]) == SYMBOL_REF
++ || GET_CODE (operands[1]) == LABEL_REF)
++ operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg);
++ else
++ operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg);
++ }
++ else
++ {
++ rtx tmp;
++ enum machine_mode mode;
++
++ /* We want to avoid reusing operand 0 if we can because it limits
++ our ability to optimize later. */
++ tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
++
++ mode = GET_MODE (operands[0]);
++ emit_insn (gen_rtx_SET (VOIDmode, tmp,
++ gen_rtx_HIGH (mode, operands[1])));
++ operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]);
++ if (can_create_pseudo_p() && ! REG_P (operands[0]))
++ {
++ tmp = gen_reg_rtx (mode);
++ emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1]));
++ operands[1] = tmp;
++ }
++ }
++ }
++}
++
++/* Emit code for addsi3. */
++
++void
++ubicom32_expand_addsi3 (rtx *operands)
++{
++ rtx op, clob;
++
++ if (can_create_pseudo_p ())
++ {
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (SImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (SImode, operands[2]);
++ }
++
++ /* Emit the instruction. */
++
++ op = gen_rtx_SET (VOIDmode, operands[0],
++ gen_rtx_PLUS (SImode, operands[1], operands[2]));
++
++ if (! can_create_pseudo_p ())
++ {
++ /* Reload doesn't know about the flags register, and doesn't know that
++ it doesn't want to clobber it. We can only do this with PLUS. */
++ emit_insn (op);
++ }
++ else
++ {
++ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
++ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
++ }
++}
++
++/* Emit code for mulsi3. Return 1 if we have generated all the code
++ necessary to do the multiplication. */
++
++int
++ubicom32_emit_mult_sequence (rtx *operands)
++{
++ if (! ubicom32_v4)
++ {
++ rtx a1, a1_1, a2;
++ rtx b1, b1_1, b2;
++ rtx mac_lo_rtx;
++ rtx t1, t2, t3;
++
++ /* Give up if we cannot create new pseudos. */
++ if (!can_create_pseudo_p())
++ return 0;
++
++ /* Synthesize 32-bit multiplication using 16-bit operations:
++
++ a1 = highpart (a)
++ a2 = lowpart (a)
++
++ b1 = highpart (b)
++ b2 = lowpart (b)
++
++ c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
++ = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
++ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^
++ Signed Signed Unsigned */
++
++ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
++ {
++ rtx op1;
++
++ op1 = gen_reg_rtx (SImode);
++ emit_move_insn (op1, operands[1]);
++ operands[1] = op1;
++ }
++
++ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
++ {
++ rtx op2;
++
++ op2 = gen_reg_rtx (SImode);
++ emit_move_insn (op2, operands[2]);
++ operands[2] = op2;
++ }
++
++ /* a1 = highpart (a) */
++ a1 = gen_reg_rtx (HImode);
++ a1_1 = gen_reg_rtx (SImode);
++ emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16)));
++ emit_move_insn (a1, gen_lowpart (HImode, a1_1));
++
++ /* a2 = lowpart (a) */
++ a2 = gen_reg_rtx (HImode);
++ emit_move_insn (a2, gen_lowpart (HImode, operands[1]));
++
++ /* b1 = highpart (b) */
++ b1 = gen_reg_rtx (HImode);
++ b1_1 = gen_reg_rtx (SImode);
++ emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16)));
++ emit_move_insn (b1, gen_lowpart (HImode, b1_1));
++
++ /* b2 = lowpart (b) */
++ b2 = gen_reg_rtx (HImode);
++ emit_move_insn (b2, gen_lowpart (HImode, operands[2]));
++
++ /* t1 = (a1 * b2) << 16 */
++ t1 = gen_reg_rtx (SImode);
++ mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM);
++ emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2));
++ emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16)));
++
++ /* t2 = (a2 * b1) << 16 */
++ t2 = gen_reg_rtx (SImode);
++ emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1));
++ emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16)));
++
++ /* mac_lo = a2 * b2 */
++ emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2));
++
++ /* t3 = t1 + t2 */
++ t3 = gen_reg_rtx (SImode);
++ emit_insn (gen_addsi3 (t3, t1, t2));
++
++ /* c = t3 + mac_lo_rtx */
++ emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3));
++
++ return 1;
++ }
++ else
++ {
++ rtx acc_rtx;
++
++ /* Give up if we cannot create new pseudos. */
++ if (!can_create_pseudo_p())
++ return 0;
++
++ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
++ {
++ rtx op1;
++
++ op1 = gen_reg_rtx (SImode);
++ emit_move_insn (op1, operands[1]);
++ operands[1] = op1;
++ }
++
++ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
++ {
++ rtx op2;
++
++ op2 = gen_reg_rtx (SImode);
++ emit_move_insn (op2, operands[2]);
++ operands[2] = op2;
++ }
++
++ acc_rtx = gen_reg_rtx (DImode);
++ emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2]));
++ emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx));
++
++ return 1;
++ }
++}
++
++/* Move the integer value VAL into OPERANDS[0]. */
++
++void
++ubicom32_emit_move_const_int (rtx dest, rtx imm)
++{
++ rtx xoperands[2];
++
++ xoperands[0] = dest;
++ xoperands[1] = imm;
++
++ /* Treat mem destinations separately. Values must be explicitly sign
++ extended. */
++ if (MEM_P (dest))
++ {
++ rtx low_hword_mem;
++ rtx low_hword_addr;
++
++ /* Emit shorter sequence for signed 7-bit quantities. */
++ if (satisfies_constraint_I (imm))
++ {
++ output_asm_insn ("move.4\t%0, %1", xoperands);
++ return;
++ }
++
++ /* Special case for pushing constants. */
++ if (GET_CODE (XEXP (dest, 0)) == PRE_DEC
++ && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
++ {
++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
++ return;
++ }
++
++ /* See if we can add 2 to the original address. This is only
++ possible if the original address is of the form REG or
++ REG+const. */
++ low_hword_addr = plus_constant (XEXP (dest, 0), 2);
++ if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1))
++ {
++ low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr);
++ MEM_COPY_ATTRIBUTES (low_hword_mem, dest);
++ output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands);
++ xoperands[0] = low_hword_mem;
++ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
++ return;
++ }
++
++ /* The original address is too complex. We need to use a
++ scratch memory by (sp) and move that to the original
++ destination. */
++ if (! reg_mentioned_p (stack_pointer_rtx, dest))
++ {
++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
++ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
++ return;
++ }
++
++ /* Our address mentions the stack pointer so we need to
++ use our scratch data register here as well as scratch
++ memory. */
++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
++ output_asm_insn ("move.4\td15, (sp)4++", xoperands);
++ output_asm_insn ("move.4\t%0, d15", xoperands);
++ return;
++ }
++
++ /* Move into registers are zero extended by default. */
++ if (! REG_P (dest))
++ abort ();
++
++ if (satisfies_constraint_N (imm))
++ {
++ output_asm_insn ("movei\t%0, %1", xoperands);
++ return;
++ }
++
++ if (INTVAL (xoperands[1]) >= 0xff80
++ && INTVAL (xoperands[1]) < 0x10000)
++ {
++ xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000);
++ output_asm_insn ("move.2\t%0, %1", xoperands);
++ return;
++ }
++
++ if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS
++ || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG)
++ && ((INTVAL (xoperands[1]) & 0x80000000) == 0))
++ {
++ output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands);
++ if ((INTVAL (xoperands[1]) & 0x7f) != 0)
++ output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands);
++ return;
++ }
++
++ if ((INTVAL (xoperands[1]) & 0xffff0000) == 0)
++ {
++ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
++ output_asm_insn ("move.2\t%0, %0", xoperands);
++ return;
++ }
++
++ /* This is very expensive. The constant is so large that we
++ need to use the stack to do the load. */
++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
++ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
++}
++
++/* Stack layout. Prologue/Epilogue. */
++
++static int save_regs_size;
++
++static void
++ubicom32_layout_frame (void)
++{
++ int regno;
++
++ memset ((char *) &save_regs[0], 0, sizeof (save_regs));
++ nregs = 0;
++ frame_size = get_frame_size ();
++
++ if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM))
++ {
++ save_regs[FRAME_POINTER_REGNUM] = 1;
++ ++nregs;
++ }
++
++ if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO))
++ ubicom32_can_use_calli_to_ret = 1;
++ else
++ {
++ ubicom32_can_use_calli_to_ret = 0;
++ save_regs[LINK_REGNO] = 1;
++ ++nregs;
++ }
++
++ /* Figure out which register(s) needs to be saved. */
++ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++)
++ if (df_regs_ever_live_p(regno)
++ && ! call_used_regs[regno]
++ && ! fixed_regs[regno]
++ && ! save_regs[regno])
++ {
++ save_regs[regno] = 1;
++ ++nregs;
++ }
++
++ save_regs_size = 4 * nregs;
++}
++
++static void
++ubicom32_emit_add_movsi (int regno, int adj)
++{
++ rtx x;
++ rtx reg = gen_rtx_REG (SImode, regno);
++
++ adj += 4;
++ if (adj > 8 * 4)
++ {
++ x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (-adj)));
++ RTX_FRAME_RELATED_P (x) = 1;
++ x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg);
++ }
++ else
++ {
++ rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
++ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
++ GEN_INT (-adj)));
++ x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg);
++ }
++ RTX_FRAME_RELATED_P (x) = 1;
++}
++
++void
++ubicom32_expand_prologue (void)
++{
++ rtx x;
++ int regno;
++ int outgoing_args_size = crtl->outgoing_args_size;
++ int adj;
++
++ if (ubicom32_naked_function_p ())
++ return;
++
++ ubicom32_builtin_saveregs ();
++
++ ubicom32_layout_frame ();
++ adj = (outgoing_args_size + get_frame_size () + save_regs_size
++ + crtl->args.pretend_args_size);
++
++ if (!adj)
++ ;
++ else if (outgoing_args_size + save_regs_size < 508
++ && get_frame_size () + save_regs_size > 508)
++ {
++ int i = 0;
++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (-adj));
++ x = emit_insn (x);
++ RTX_FRAME_RELATED_P (x) = 1;
++
++ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
++ if (save_regs[regno] && regno != LINK_REGNO)
++ {
++ x = gen_rtx_MEM (SImode,
++ gen_rtx_PLUS (Pmode,
++ stack_pointer_rtx,
++ GEN_INT (i * 4 + outgoing_args_size)));
++ x = emit_move_insn (x, gen_rtx_REG (SImode, regno));
++ RTX_FRAME_RELATED_P (x) = 1;
++ ++i;
++ }
++ if (save_regs[LINK_REGNO])
++ {
++ x = gen_rtx_MEM (SImode,
++ gen_rtx_PLUS (Pmode,
++ stack_pointer_rtx,
++ GEN_INT (i * 4 + outgoing_args_size)));
++ x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO));
++ RTX_FRAME_RELATED_P (x) = 1;
++ }
++ }
++ else
++ {
++ int regno;
++ int adj = get_frame_size () + crtl->args.pretend_args_size;
++ int i = 0;
++
++ if (save_regs[LINK_REGNO])
++ {
++ ubicom32_emit_add_movsi (LINK_REGNO, adj);
++ ++i;
++ }
++
++ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno)
++ if (save_regs[regno] && regno != LINK_REGNO)
++ {
++ if (i)
++ {
++ rtx mem = gen_rtx_MEM (SImode,
++ gen_rtx_PRE_DEC (Pmode,
++ stack_pointer_rtx));
++ x = emit_move_insn (mem, gen_rtx_REG (SImode, regno));
++ RTX_FRAME_RELATED_P (x) = 1;
++ }
++ else
++ ubicom32_emit_add_movsi (regno, adj);
++ ++i;
++ }
++
++ if (outgoing_args_size || (!i && adj))
++ {
++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (-outgoing_args_size - (i ? 0 : adj)));
++ x = emit_insn (x);
++ RTX_FRAME_RELATED_P (x) = 1;
++ }
++ }
++
++ if (frame_pointer_needed)
++ {
++ int fp_adj = save_regs_size + outgoing_args_size;
++ x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (fp_adj));
++ x = emit_insn (x);
++ RTX_FRAME_RELATED_P (x) = 1;
++ }
++}
++
++void
++ubicom32_expand_epilogue (void)
++{
++ rtx x;
++ int regno;
++ int outgoing_args_size = crtl->outgoing_args_size;
++ int adj;
++ int i;
++
++ if (ubicom32_naked_function_p ())
++ {
++ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
++ LINK_REGNO)));
++ return;
++ }
++
++ if (cfun->calls_alloca)
++ {
++ x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
++ GEN_INT (-save_regs_size));
++ emit_insn (x);
++ outgoing_args_size = 0;
++ }
++
++ if (outgoing_args_size)
++ {
++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (outgoing_args_size));
++ emit_insn (x);
++ }
++
++ i = 0;
++ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
++ if (save_regs[regno] && regno != LINK_REGNO)
++ {
++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
++ emit_move_insn (gen_rtx_REG (SImode, regno), x);
++ ++i;
++ }
++
++ /* Do we have to adjust the stack after we've finished restoring regs? */
++ adj = get_frame_size() + crtl->args.pretend_args_size;
++ if (cfun->stdarg)
++ adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
++
++#if 0
++ if (crtl->calls_eh_return && 0)
++ {
++ if (save_regs[LINK_REGNO])
++ {
++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
++ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
++ }
++
++ if (adj)
++ {
++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (adj));
++ x = emit_insn (x);
++ }
++
++ /* Perform the additional bump for __throw. */
++ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ EH_RETURN_STACKADJ_RTX));
++ emit_jump_insn (gen_eh_return_internal ());
++ return;
++ }
++#endif
++
++ if (save_regs[LINK_REGNO])
++ {
++ if (adj >= 4 && adj <= (6 * 4))
++ {
++ x = GEN_INT (adj + 4);
++ emit_jump_insn (gen_return_from_post_modify_sp (x));
++ return;
++ }
++
++ if (adj == 0)
++ {
++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
++ emit_jump_insn (gen_return_internal (x));
++ return;
++ }
++
++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
++ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
++ }
++
++ if (adj)
++ {
++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
++ GEN_INT (adj));
++ x = emit_insn (x);
++ adj = 0;
++ }
++
++ /* Given that we've just done all the hard work here we may as well use
++ a calli to return. */
++ ubicom32_can_use_calli_to_ret = 1;
++ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO)));
++}
++
++void
++ubicom32_expand_call_fdpic (rtx *operands)
++{
++ rtx c;
++ rtx addr;
++ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
++
++ addr = XEXP (operands[0], 0);
++
++ c = gen_call_fdpic (addr, operands[1], fdpic_reg);
++ emit_call_insn (c);
++}
++
++void
++ubicom32_expand_call_value_fdpic (rtx *operands)
++{
++ rtx c;
++ rtx addr;
++ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
++
++ addr = XEXP (operands[1], 0);
++
++ c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg);
++ emit_call_insn (c);
++}
++
++void
++ubicom32_expand_eh_return (rtx *operands)
++{
++ if (REG_P (operands[0])
++ || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO)
++ {
++ rtx sp = EH_RETURN_STACKADJ_RTX;
++ emit_move_insn (sp, operands[0]);
++ operands[0] = sp;
++ }
++
++ if (REG_P (operands[1])
++ || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO)
++ {
++ rtx ra = EH_RETURN_HANDLER_RTX;
++ emit_move_insn (ra, operands[1]);
++ operands[1] = ra;
++ }
++}
++
++/* Compute the offsets between eliminable registers. */
++
++int
++ubicom32_initial_elimination_offset (int from, int to)
++{
++ ubicom32_layout_frame ();
++ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
++ return save_regs_size + crtl->outgoing_args_size;
++
++ if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
++ return get_frame_size ()/* + save_regs_size */;
++
++ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
++ return get_frame_size ()
++ + crtl->outgoing_args_size
++ + save_regs_size;
++
++ return 0;
++}
++
++/* Return 1 if it is appropriate to emit `ret' instructions in the
++ body of a function. Do this only if the epilogue is simple, needing a
++ couple of insns. Prior to reloading, we can't tell how many registers
++ must be saved, so return 0 then. Return 0 if there is no frame
++ marker to de-allocate.
++
++ If NON_SAVING_SETJMP is defined and true, then it is not possible
++ for the epilogue to be simple, so return 0. This is a special case
++ since NON_SAVING_SETJMP will not cause regs_ever_live to change
++ until final, but jump_optimize may need to know sooner if a
++ `return' is OK. */
++
++int
++ubicom32_can_use_return_insn_p (void)
++{
++ if (! reload_completed || frame_pointer_needed)
++ return 0;
++
++ return 1;
++}
++
++/* Attributes and CC handling. */
++
++/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
++ struct attribute_spec.handler. */
++static tree
++ubicom32_handle_fndecl_attribute (tree *node, tree name,
++ tree args ATTRIBUTE_UNUSED,
++ int flags ATTRIBUTE_UNUSED,
++ bool *no_add_attrs)
++{
++ if (TREE_CODE (*node) != FUNCTION_DECL)
++ {
++ warning ("'%s' attribute only applies to functions",
++ IDENTIFIER_POINTER (name));
++ *no_add_attrs = true;
++ }
++
++ return NULL_TREE;
++}
++
++/* A C expression that places additional restrictions on the register class to
++ use when it is necessary to copy value X into a register in class CLASS.
++ The value is a register class; perhaps CLASS, or perhaps another, smaller
++ class. On many machines, the following definition is safe:
++
++ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
++
++ Sometimes returning a more restrictive class makes better code. For
++ example, on the 68000, when X is an integer constant that is in range for a
++ `moveq' instruction, the value of this macro is always `DATA_REGS' as long
++ as CLASS includes the data registers. Requiring a data register guarantees
++ that a `moveq' will be used.
++
++ If X is a `const_double', by returning `NO_REGS' you can force X into a
++ memory constant. This is useful on certain machines where immediate
++ floating values cannot be loaded into certain kinds of registers. */
++
++enum reg_class
++ubicom32_preferred_reload_class (rtx x, enum reg_class class)
++{
++ /* If a symbolic constant, HIGH or a PLUS is reloaded,
++ it is most likely being used as an address, so
++ prefer ADDRESS_REGS. If 'class' is not a superset
++ of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */
++ if (GET_CODE (x) == PLUS
++ || GET_CODE (x) == HIGH
++ || GET_CODE (x) == LABEL_REF
++ || GET_CODE (x) == SYMBOL_REF
++ || GET_CODE (x) == CONST)
++ {
++ if (reg_class_subset_p (ALL_ADDRESS_REGS, class))
++ return ALL_ADDRESS_REGS;
++
++ return NO_REGS;
++ }
++
++ return class;
++}
++
++/* Function arguments and varargs. */
++
++int
++ubicom32_reg_parm_stack_space (tree fndecl)
++{
++ return 0;
++
++ if (fndecl
++ && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0
++ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl))))
++ != void_type_node))
++ return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
++
++ return 0;
++}
++
++/* Flush the argument registers to the stack for a stdarg function;
++ return the new argument pointer. */
++
++rtx
++ubicom32_builtin_saveregs (void)
++{
++ int regno;
++
++ if (! cfun->stdarg)
++ return 0;
++
++ for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno)
++ emit_move_insn (gen_rtx_MEM (SImode,
++ gen_rtx_PRE_DEC (SImode,
++ stack_pointer_rtx)),
++ gen_rtx_REG (SImode, regno));
++
++ return stack_pointer_rtx;
++}
++
++void
++ubicom32_va_start (tree valist, rtx nextarg)
++{
++ std_expand_builtin_va_start (valist, nextarg);
++}
++
++rtx
++ubicom32_va_arg (tree valist, tree type)
++{
++ HOST_WIDE_INT size, rsize;
++ tree addr, incr, tmp;
++ rtx addr_rtx;
++ int indirect = 0;
++
++ /* Round up sizeof(type) to a word. */
++ size = int_size_in_bytes (type);
++ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
++
++ /* Large types are passed by reference. */
++ if (size > 8)
++ {
++ indirect = 1;
++ size = rsize = UNITS_PER_WORD;
++ }
++
++ incr = valist;
++ addr = incr = save_expr (incr);
++
++ /* FIXME Nat's version - is it correct? */
++ tmp = fold_convert (ptr_type_node, size_int (rsize));
++ tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp);
++ incr = fold (tmp);
++
++ /* FIXME Nat's version - is it correct? */
++ incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr);
++
++ TREE_SIDE_EFFECTS (incr) = 1;
++ expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
++
++ addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
++
++ if (size < UNITS_PER_WORD)
++ emit_insn (gen_addsi3 (addr_rtx, addr_rtx,
++ GEN_INT (UNITS_PER_WORD - size)));
++
++ if (indirect)
++ {
++ addr_rtx = force_reg (Pmode, addr_rtx);
++ addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
++ set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
++ }
++
++ return addr_rtx;
++}
++
++void
++init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
++ int indirect ATTRIBUTE_UNUSED)
++{
++ cum->nbytes = 0;
++
++ if (!libname)
++ {
++ cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0
++ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
++ != void_type_node));
++ }
++}
++
++/* Return an RTX to represent where a value in mode MODE will be passed
++ to a function. If the result is 0, the argument will be pushed. */
++
++rtx
++function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
++ int named ATTRIBUTE_UNUSED)
++{
++ rtx result = 0;
++ int size, align;
++ int nregs = UBICOM32_FUNCTION_ARG_REGS;
++
++ /* Figure out the size of the object to be passed. */
++ if (mode == BLKmode)
++ size = int_size_in_bytes (type);
++ else
++ size = GET_MODE_SIZE (mode);
++
++ /* Figure out the alignment of the object to be passed. */
++ align = size;
++
++ cum->nbytes = (cum->nbytes + 3) & ~3;
++
++ /* Don't pass this arg via a register if all the argument registers
++ are used up. */
++ if (cum->nbytes >= nregs * UNITS_PER_WORD)
++ return 0;
++
++ /* Don't pass this arg via a register if it would be split between
++ registers and memory. */
++ result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
++
++ return result;
++}
++
++rtx
++function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
++ int named ATTRIBUTE_UNUSED)
++{
++ if (cfun->stdarg)
++ return 0;
++
++ return function_arg (cum, mode, type, named);
++}
++
++
++/* Implement hook TARGET_ARG_PARTIAL_BYTES.
++
++ Returns the number of bytes at the beginning of an argument that
++ must be put in registers. The value must be zero for arguments
++ that are passed entirely in registers or that are entirely pushed
++ on the stack. */
++static int
++ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
++ tree type, bool named ATTRIBUTE_UNUSED)
++{
++ int size, diff;
++
++ int nregs = UBICOM32_FUNCTION_ARG_REGS;
++
++ /* round up to full word */
++ cum->nbytes = (cum->nbytes + 3) & ~3;
++
++ if (targetm.calls.pass_by_reference (cum, mode, type, named))
++ return 0;
++
++ /* number of bytes left in registers */
++ diff = nregs*UNITS_PER_WORD - cum->nbytes;
++
++ /* regs all used up */
++ if (diff <= 0)
++ return 0;
++
++ /* Figure out the size of the object to be passed. */
++ if (mode == BLKmode)
++ size = int_size_in_bytes (type);
++ else
++ size = GET_MODE_SIZE (mode);
++
++ /* enough space left in regs for size */
++ if (size <= diff)
++ return 0;
++
++ /* put diff bytes in regs and rest on stack */
++ return diff;
++
++}
++
++static bool
++ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
++ enum machine_mode mode, const_tree type,
++ bool named ATTRIBUTE_UNUSED)
++{
++ int size;
++
++ if (type)
++ size = int_size_in_bytes (type);
++ else
++ size = GET_MODE_SIZE (mode);
++
++ return size <= 0 || size > 8;
++}
++
++static bool
++ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
++ enum machine_mode mode, const_tree type,
++ bool named ATTRIBUTE_UNUSED)
++{
++ int size;
++
++ if (type)
++ size = int_size_in_bytes (type);
++ else
++ size = GET_MODE_SIZE (mode);
++
++ return size <= 0 || size > 8;
++}
++
++static bool
++ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
++{
++ int size, mode;
++
++ if (!type)
++ return true;
++
++ size = int_size_in_bytes(type);
++ if (size > 8)
++ return true;
++
++ mode = TYPE_MODE(type);
++ if (mode == BLKmode)
++ return true;
++
++ return false;
++}
++
++/* Return true if a given register number REGNO is acceptable for machine
++ mode MODE. */
++bool
++ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
++{
++ /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */
++ if (! ubicom32_v3)
++ {
++ if (regno == ACC0_HI_REGNUM)
++ return (mode == QImode || mode == HImode);
++ }
++
++ /* Only the flags reg can hold CCmode. */
++ if (GET_MODE_CLASS (mode) == MODE_CC)
++ return regno == CC_REGNUM;
++
++ /* We restrict the choice of DImode registers to only being address,
++ data or accumulator regs. We also restrict them to only start on
++ even register numbers so we never have to worry about partial
++ overlaps between operands in instructions. */
++ if (GET_MODE_SIZE (mode) > 4)
++ {
++ switch (REGNO_REG_CLASS (regno))
++ {
++ case ADDRESS_REGS:
++ case DATA_REGS:
++ case ACC_REGS:
++ return (regno & 1) == 0;
++
++ default:
++ return false;
++ }
++ }
++
++ return true;
++}
++
++/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
++ and check its validity for a certain class.
++ We have two alternate definitions for each of them.
++ The usual definition accepts all pseudo regs; the other rejects
++ them unless they have been allocated suitable hard regs.
++ The symbol REG_OK_STRICT causes the latter definition to be used.
++
++ Most source files want to accept pseudo regs in the hope that
++ they will get allocated to the class that the insn wants them to be in.
++ Source files for reload pass need to be strict.
++ After reload, it makes no difference, since pseudo regs have
++ been eliminated by then.
++
++ These assume that REGNO is a hard or pseudo reg number.
++ They give nonzero only if REGNO is a hard reg of the suitable class
++ or a pseudo reg currently allocated to a suitable hard reg.
++ Since they use reg_renumber, they are safe only once reg_renumber
++ has been allocated, which happens in local-alloc.c. */
++
++int
++ubicom32_regno_ok_for_base_p (int regno, int strict)
++{
++ if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM)
++ || (!strict
++ && (regno >= FIRST_PSEUDO_REGISTER
++ || regno == ARG_POINTER_REGNUM))
++ || (strict && (reg_renumber
++ && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM
++ && reg_renumber[regno] <= STACK_POINTER_REGNUM)))
++ return 1;
++
++ return 0;
++}
++
++int
++ubicom32_regno_ok_for_index_p (int regno, int strict)
++{
++ if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM)
++ || (!strict && regno >= FIRST_PSEUDO_REGISTER)
++ || (strict && (reg_renumber
++ && reg_renumber[regno] >= FIRST_DATA_REGNUM
++ && reg_renumber[regno] <= LAST_DATA_REGNUM)))
++ return 1;
++
++ return 0;
++}
++
++/* Returns 1 if X is a valid index register. STRICT is 1 if only hard
++ registers should be accepted. Accept either REG or SUBREG where a
++ register is valid. */
++
++static bool
++ubicom32_is_index_reg (rtx x, int strict)
++{
++ if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict))
++ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
++ && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict)))
++ return true;
++
++ return false;
++}
++
++/* Return 1 if X is a valid index for a memory address. */
++
++static bool
++ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict)
++{
++ /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2
++ or 4 depending on mode. */
++ if (CONST_INT_P (x))
++ {
++ switch (mode)
++ {
++ case QImode:
++ return satisfies_constraint_J (x);
++
++ case HImode:
++ return satisfies_constraint_K (x);
++
++ case SImode:
++ case SFmode:
++ return satisfies_constraint_L (x);
++
++ case DImode:
++ return satisfies_constraint_L (x)
++ && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4));
++
++ default:
++ return false;
++ }
++ }
++
++ if (mode != SImode && mode != HImode && mode != QImode)
++ return false;
++
++ /* Register index scaled by mode of operand: REG + REG * modesize.
++ Valid scaled index registers are:
++
++ SImode (mult (dreg) 4))
++ HImode (mult (dreg) 2))
++ QImode (mult (dreg) 1)) */
++ if (GET_CODE (x) == MULT
++ && ubicom32_is_index_reg (XEXP (x, 0), strict)
++ && CONST_INT_P (XEXP (x, 1))
++ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode))
++ return true;
++
++ /* REG + REG addressing is allowed for QImode. */
++ if (ubicom32_is_index_reg (x, strict) && mode == QImode)
++ return true;
++
++ return false;
++}
++
++static bool
++ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs)
++{
++ if (offs < 0)
++ return false;
++
++ switch (mode)
++ {
++ case QImode:
++ return offs <= 127;
++
++ case HImode:
++ return offs <= 254;
++
++ case SImode:
++ case SFmode:
++ return offs <= 508;
++
++ case DImode:
++ return offs <= 504;
++
++ default:
++ return false;
++ }
++}
++
++static int
++ubicom32_get_valid_offset_mask (enum machine_mode mode)
++{
++ switch (mode)
++ {
++ case QImode:
++ return 127;
++
++ case HImode:
++ return 255;
++
++ case SImode:
++ case SFmode:
++ return 511;
++
++ case DImode:
++ return 255;
++
++ default:
++ return 0;
++ }
++}
++
++/* Returns 1 if X is a valid base register. STRICT is 1 if only hard
++ registers should be accepted. Accept either REG or SUBREG where a
++ register is valid. */
++
++static bool
++ubicom32_is_base_reg (rtx x, int strict)
++{
++ if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict))
++ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
++ && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict)))
++ return true;
++
++ return false;
++}
++
++static bool
++ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
++{
++ return TARGET_FDPIC;
++}
++
++/* Determine if X is a legitimate constant. */
++
++bool
++ubicom32_legitimate_constant_p (rtx x)
++{
++ /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether
++ a constant can be entered into reg_equiv_constant[]. If we return true,
++ reload can create new instances of the constant whenever it likes.
++
++ The idea is therefore to accept as many constants as possible (to give
++ reload more freedom) while rejecting constants that can only be created
++ at certain times. In particular, anything with a symbolic component will
++ require use of the pseudo FDPIC register, which is only available before
++ reload. */
++ if (TARGET_FDPIC)
++ {
++ if (GET_CODE (x) == SYMBOL_REF
++ || (GET_CODE (x) == CONST
++ && GET_CODE (XEXP (x, 0)) == PLUS
++ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
++ || CONSTANT_ADDRESS_P (x))
++ return false;
++
++ return true;
++ }
++
++ /* For non-PIC code anything goes! */
++ return true;
++}
++
++/* Address validation. */
++
++bool
++ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
++{
++ if (TARGET_DEBUG_ADDRESS)
++ {
++ fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n",
++ (strict) ? " (STRICT)" : "");
++ debug_rtx (x);
++ }
++
++ if (CONSTANT_ADDRESS_P (x))
++ return false;
++
++ if (ubicom32_is_base_reg (x, strict))
++ return true;
++
++ if ((GET_CODE (x) == POST_INC
++ || GET_CODE (x) == PRE_INC
++ || GET_CODE (x) == POST_DEC
++ || GET_CODE (x) == PRE_DEC)
++ && REG_P (XEXP (x, 0))
++ && ubicom32_is_base_reg (XEXP (x, 0), strict)
++ && mode != DImode)
++ return true;
++
++ if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
++ && ubicom32_is_base_reg (XEXP (x, 0), strict)
++ && GET_CODE (XEXP (x, 1)) == PLUS
++ && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))
++ && CONST_INT_P (XEXP (XEXP (x, 1), 1))
++ && mode != DImode)
++ {
++ HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1));
++ switch (mode)
++ {
++ case QImode:
++ return disp >= -8 && disp <= 7;
++
++ case HImode:
++ return disp >= -16 && disp <= 14 && ! (disp & 1);
++
++ case SImode:
++ return disp >= -32 && disp <= 28 && ! (disp & 3);
++
++ default:
++ return false;
++ }
++ }
++
++ /* Accept base + index * scale. */
++ if (GET_CODE (x) == PLUS
++ && ubicom32_is_base_reg (XEXP (x, 0), strict)
++ && ubicom32_is_index_expr (mode, XEXP (x, 1), strict))
++ return true;
++
++ /* Accept index * scale + base. */
++ if (GET_CODE (x) == PLUS
++ && ubicom32_is_base_reg (XEXP (x, 1), strict)
++ && ubicom32_is_index_expr (mode, XEXP (x, 0), strict))
++ return true;
++
++ if (! TARGET_FDPIC)
++ {
++ /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits
++ displacement operand:
++
++ moveai a1, #%hi(SYM)
++ move.4 d3, %lo(SYM)(a1) */
++ if (GET_CODE (x) == LO_SUM
++ && ubicom32_is_base_reg (XEXP (x, 0), strict)
++ && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
++ || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */)
++ && mode != DImode)
++ return true;
++ }
++
++ if (TARGET_DEBUG_ADDRESS)
++ fprintf (stderr, "\nNot a legitimate address.\n");
++
++ return false;
++}
++
++rtx
++ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
++ enum machine_mode mode)
++{
++ if (mode == BLKmode)
++ return NULL_RTX;
++
++ if (GET_CODE (x) == PLUS
++ && REG_P (XEXP (x, 0))
++ && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0)))
++ && CONST_INT_P (XEXP (x, 1))
++ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1))))
++ {
++ rtx base;
++ rtx plus;
++ rtx new_rtx;
++ HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
++ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
++ HOST_WIDE_INT high = val ^ low;
++
++ if (val < 0)
++ return NULL_RTX;
++
++ if (! low)
++ return NULL_RTX;
++
++ /* Reload the high part into a base reg; leave the low part
++ in the mem directly. */
++ base = XEXP (x, 0);
++ if (! ubicom32_is_base_reg (base, 0))
++ base = copy_to_mode_reg (Pmode, base);
++
++ plus = expand_simple_binop (Pmode, PLUS,
++ gen_int_mode (high, Pmode),
++ base, NULL, 0, OPTAB_WIDEN);
++ new_rtx = plus_constant (plus, low);
++
++ return new_rtx;
++ }
++
++ return NULL_RTX;
++}
++
++/* Try a machine-dependent way of reloading an illegitimate address AD
++ operand. If we find one, push the reload and and return the new address.
++
++ MODE is the mode of the enclosing MEM. OPNUM is the operand number
++ and TYPE is the reload type of the current reload. */
++
++rtx
++ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode,
++ int opnum, int type)
++{
++ /* Is this an address that we've already fixed up? If it is then
++ recognize it and move on. */
++ if (GET_CODE (ad) == PLUS
++ && GET_CODE (XEXP (ad, 0)) == PLUS
++ && REG_P (XEXP (XEXP (ad, 0), 0))
++ && CONST_INT_P (XEXP (XEXP (ad, 0), 1))
++ && CONST_INT_P (XEXP (ad, 1)))
++ {
++ push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL,
++ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
++ opnum, (enum reload_type) type);
++ return ad;
++ }
++
++ /* Have we got an address where the offset is simply out of range? If
++ yes then reload the range as a high part and smaller offset. */
++ if (GET_CODE (ad) == PLUS
++ && REG_P (XEXP (ad, 0))
++ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
++ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))
++ && CONST_INT_P (XEXP (ad, 1))
++ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1))))
++ {
++ rtx temp;
++ rtx new_rtx;
++
++ HOST_WIDE_INT val = INTVAL (XEXP (ad, 1));
++ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
++ HOST_WIDE_INT high = val ^ low;
++
++ /* Reload the high part into a base reg; leave the low part
++ in the mem directly. */
++ temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high));
++ new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low));
++
++ push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL,
++ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
++ opnum, (enum reload_type) type);
++ return new_rtx;
++ }
++
++ /* If we're presented with an pre/post inc/dec then we must force this
++ to be done in an address register. The register allocator should
++ work this out for itself but at times ends up trying to use the wrong
++ class. If we get the wrong class then reload will end up generating
++ at least 3 instructions whereas this way we can hopefully keep it to
++ just 2. */
++ if ((GET_CODE (ad) == POST_INC
++ || GET_CODE (ad) == PRE_INC
++ || GET_CODE (ad) == POST_DEC
++ || GET_CODE (ad) == PRE_DEC)
++ && REG_P (XEXP (ad, 0))
++ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
++ && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))))
++ {
++ push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0),
++ BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0,
++ opnum, RELOAD_OTHER);
++ return ad;
++ }
++
++ return NULL_RTX;
++}
++
++/* Compute a (partial) cost for rtx X. Return true if the complete
++ cost has been computed, and false if subexpressions should be
++ scanned. In either case, *TOTAL contains the cost result. */
++
++static bool
++ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total,
++ bool speed ATTRIBUTE_UNUSED)
++{
++ enum machine_mode mode = GET_MODE (x);
++
++ switch (code)
++ {
++ case CONST_INT:
++ /* Very short constants often fold into instructions so
++ we pretend that they don't cost anything! This is
++ really important as regards zero values as otherwise
++ the compiler has a nasty habit of wanting to reuse
++ zeroes that are in regs but that tends to pessimize
++ the code. */
++ if (satisfies_constraint_I (x))
++ {
++ *total = 0;
++ return true;
++ }
++
++ /* Bit clearing costs nothing */
++ if (outer_code == AND
++ && exact_log2 (~INTVAL (x)) != -1)
++ {
++ *total = 0;
++ return true;
++ }
++
++ /* Masking the lower set of bits costs nothing. */
++ if (outer_code == AND
++ && exact_log2 (INTVAL (x) + 1) != -1)
++ {
++ *total = 0;
++ return true;
++ }
++
++ /* Bit setting costs nothing. */
++ if (outer_code == IOR
++ && exact_log2 (INTVAL (x)) != -1)
++ {
++ *total = 0;
++ return true;
++ }
++
++ /* Larger constants that can be loaded via movei aren't too
++ bad. If we're just doing a set they cost nothing extra. */
++ if (satisfies_constraint_N (x))
++ {
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (2);
++ else
++ *total = COSTS_N_INSNS (1);
++ return true;
++ }
++
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (5);
++ else
++ *total = COSTS_N_INSNS (3);
++ return true;
++
++ case CONST_DOUBLE:
++ /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
++ so their cost is very high. */
++ *total = COSTS_N_INSNS (6);
++ return true;
++
++ case CONST:
++ case SYMBOL_REF:
++ case MEM:
++ *total = 0;
++ return true;
++
++ case IF_THEN_ELSE:
++ *total = COSTS_N_INSNS (1);
++ return true;
++
++ case LABEL_REF:
++ case HIGH:
++ case LO_SUM:
++ case BSWAP:
++ case PLUS:
++ case MINUS:
++ case AND:
++ case IOR:
++ case XOR:
++ case ASHIFT:
++ case ASHIFTRT:
++ case LSHIFTRT:
++ case NEG:
++ case NOT:
++ case SIGN_EXTEND:
++ case ZERO_EXTEND:
++ case ZERO_EXTRACT:
++ if (outer_code == SET)
++ {
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (2);
++ else
++ *total = COSTS_N_INSNS (1);
++ }
++ return true;
++
++ case COMPARE:
++ if (outer_code == SET)
++ {
++ if (GET_MODE (XEXP (x, 0)) == DImode
++ || GET_MODE (XEXP (x, 1)) == DImode)
++ *total = COSTS_N_INSNS (2);
++ else
++ *total = COSTS_N_INSNS (1);
++ }
++ return true;
++
++ case UMOD:
++ case UDIV:
++ case MOD:
++ case DIV:
++ if (outer_code == SET)
++ {
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (600);
++ else
++ *total = COSTS_N_INSNS (200);
++ }
++ return true;
++
++ case MULT:
++ if (outer_code == SET)
++ {
++ if (! ubicom32_v4)
++ {
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (15);
++ else
++ *total = COSTS_N_INSNS (5);
++ }
++ else
++ {
++ if (mode == DImode)
++ *total = COSTS_N_INSNS (6);
++ else
++ *total = COSTS_N_INSNS (2);
++ }
++ }
++ return true;
++
++ case UNSPEC:
++ if (XINT (x, 1) == UNSPEC_FDPIC_GOT
++ || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC)
++ *total = 0;
++ return true;
++
++ default:
++ return false;
++ }
++}
++
++/* Return 1 if ADDR can have different meanings depending on the machine
++ mode of the memory reference it is used for or if the address is
++ valid for some modes but not others.
++
++ Autoincrement and autodecrement addresses typically have
++ mode-dependent effects because the amount of the increment or
++ decrement is the size of the operand being addressed. Some machines
++ have other mode-dependent addresses. Many RISC machines have no
++ mode-dependent addresses.
++
++ You may assume that ADDR is a valid address for the machine. */
++
++int
++ubicom32_mode_dependent_address_p (rtx addr)
++{
++ if (GET_CODE (addr) == POST_INC
++ || GET_CODE (addr) == PRE_INC
++ || GET_CODE (addr) == POST_DEC
++ || GET_CODE (addr) == PRE_DEC
++ || GET_CODE (addr) == POST_MODIFY
++ || GET_CODE (addr) == PRE_MODIFY)
++ return 1;
++
++ return 0;
++}
++
++static void
++ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
++{
++ fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n",
++ get_frame_size (), crtl->args.pretend_args_size,
++ save_regs_size, crtl->outgoing_args_size,
++ current_function_is_leaf ? "leaf" : "nonleaf");
++}
++
++static void
++ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
++ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
++{
++ ubicom32_reorg_completed = 0;
++}
++
++static void
++ubicom32_machine_dependent_reorg (void)
++{
++#if 0 /* Commenting out this optimization until it is fixed */
++ if (optimize)
++ {
++ compute_bb_for_insn ();
++
++ /* Do a very simple CSE pass over just the hard registers. */
++ reload_cse_regs (get_insns ());
++
++ /* Reload_cse_regs can eliminate potentially-trapping MEMs.
++ Remove any EH edges associated with them. */
++ if (flag_non_call_exceptions)
++ purge_all_dead_edges ();
++ }
++#endif
++ ubicom32_reorg_completed = 1;
++}
++
++void
++ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target)
++{
++ rtx note;
++ int mostly_false_jump;
++ rtx xoperands[2];
++ rtx cc_reg;
++
++ note = find_reg_note (insn, REG_BR_PROB, 0);
++ mostly_false_jump = !note || (INTVAL (XEXP (note, 0))
++ <= REG_BR_PROB_BASE / 2);
++
++ xoperands[0] = target;
++ xoperands[1] = cond;
++ cc_reg = XEXP (cond, 0);
++
++ if (GET_MODE (cc_reg) == CCWmode
++ || GET_MODE (cc_reg) == CCWZmode
++ || GET_MODE (cc_reg) == CCWZNmode)
++ {
++ if (mostly_false_jump)
++ output_asm_insn ("jmp%b1.w.f\t%0", xoperands);
++ else
++ output_asm_insn ("jmp%b1.w.t\t%0", xoperands);
++ return;
++ }
++
++ if (GET_MODE (cc_reg) == CCSmode
++ || GET_MODE (cc_reg) == CCSZmode
++ || GET_MODE (cc_reg) == CCSZNmode)
++ {
++ if (mostly_false_jump)
++ output_asm_insn ("jmp%b1.s.f\t%0", xoperands);
++ else
++ output_asm_insn ("jmp%b1.s.t\t%0", xoperands);
++ return;
++ }
++
++ abort ();
++}
++
++/* Return non-zero if FUNC is a naked function. */
++
++static int
++ubicom32_naked_function_p (void)
++{
++ return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
++}
++
++/* Return an RTX indicating where the return address to the
++ calling function can be found. */
++rtx
++ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
++{
++ if (count != 0)
++ return NULL_RTX;
++
++ return get_hard_reg_initial_val (Pmode, LINK_REGNO);
++}
++
++/*
++ * ubicom32_readonly_data_section: This routtine handles code
++ * at the start of readonly data sections
++ */
++static void
++ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED)
++{
++ static int num = 0;
++ if (in_section == readonly_data_section){
++ fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP);
++ if (flag_data_sections){
++ fprintf (asm_out_file, ".rodata%d", num);
++ fprintf (asm_out_file, ",\"a\"");
++ }
++ fprintf (asm_out_file, "\n");
++ }
++ num++;
++}
++
++/*
++ * ubicom32_text_section: not in readonly section
++ */
++static void
++ubicom32_text_section(const void *data ATTRIBUTE_UNUSED)
++{
++ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
++}
++
++/*
++ * ubicom32_data_section: not in readonly section
++ */
++static void
++ubicom32_data_section(const void *data ATTRIBUTE_UNUSED)
++{
++ fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP);
++}
++
++/*
++ * ubicom32_asm_init_sections: This routine implements special
++ * section handling
++ */
++static void
++ubicom32_asm_init_sections(void)
++{
++ text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL);
++
++ data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL);
++
++ readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL);
++}
++
++/*
++ * ubicom32_profiler: This routine would call
++ * mcount to support prof and gprof if mcount
++ * was supported. Currently, do nothing.
++ */
++void
++ubicom32_profiler(void)
++{
++}
++
++/* Initialise the builtin functions. Start by initialising
++ descriptions of different types of functions (e.g., void fn(int),
++ int fn(void)), and then use these to define the builtins. */
++static void
++ubicom32_init_builtins (void)
++{
++ tree endlink;
++ tree short_unsigned_endlink;
++ tree unsigned_endlink;
++ tree short_unsigned_ftype_short_unsigned;
++ tree unsigned_ftype_unsigned;
++
++ endlink = void_list_node;
++
++ short_unsigned_endlink
++ = tree_cons (NULL_TREE, short_unsigned_type_node, endlink);
++
++ unsigned_endlink
++ = tree_cons (NULL_TREE, unsigned_type_node, endlink);
++
++ short_unsigned_ftype_short_unsigned
++ = build_function_type (short_unsigned_type_node, short_unsigned_endlink);
++
++ unsigned_ftype_unsigned
++ = build_function_type (unsigned_type_node, unsigned_endlink);
++
++ /* Initialise the byte swap function. */
++ add_builtin_function ("__builtin_ubicom32_swapb_2",
++ short_unsigned_ftype_short_unsigned,
++ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
++ BUILT_IN_MD, NULL,
++ NULL_TREE);
++
++ /* Initialise the byte swap function. */
++ add_builtin_function ("__builtin_ubicom32_swapb_4",
++ unsigned_ftype_unsigned,
++ UBICOM32_BUILTIN_UBICOM32_SWAPB_4,
++ BUILT_IN_MD, NULL,
++ NULL_TREE);
++}
++
++/* Given a builtin function taking 2 operands (i.e., target + source),
++ emit the RTL for the underlying instruction. */
++static rtx
++ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target)
++{
++ tree arg0;
++ rtx op0, pat;
++ enum machine_mode tmode, mode0;
++
++ /* Grab the incoming argument and emit its RTL. */
++ arg0 = TREE_VALUE (arglist);
++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
++
++ /* Determine the modes of the instruction operands. */
++ tmode = insn_data[icode].operand[0].mode;
++ mode0 = insn_data[icode].operand[1].mode;
++
++ /* Ensure that the incoming argument RTL is in a register of the
++ correct mode. */
++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
++ op0 = copy_to_mode_reg (mode0, op0);
++
++ /* If there isn't a suitable target, emit a target register. */
++ if (target == 0
++ || GET_MODE (target) != tmode
++ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
++ target = gen_reg_rtx (tmode);
++
++ /* Emit and return the new instruction. */
++ pat = GEN_FCN (icode) (target, op0);
++ if (!pat)
++ return 0;
++ emit_insn (pat);
++
++ return target;
++}
++
++/* Expand a call to a builtin function. */
++static rtx
++ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
++ enum machine_mode mode ATTRIBUTE_UNUSED,
++ int ignore ATTRIBUTE_UNUSED)
++{
++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
++ tree arglist = CALL_EXPR_ARGS(exp);
++ int fcode = DECL_FUNCTION_CODE (fndecl);
++
++ switch (fcode)
++ {
++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
++ return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target);
++
++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
++ return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target);
++
++ default:
++ gcc_unreachable();
++ }
++
++ /* Should really do something sensible here. */
++ return NULL_RTX;
++}
++
++/* Fold any constant argument for a swapb.2 instruction. */
++static tree
++ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist)
++{
++ tree arg0;
++
++ arg0 = TREE_VALUE (arglist);
++
++ /* Optimize constant value. */
++ if (TREE_CODE (arg0) == INTEGER_CST)
++ {
++ HOST_WIDE_INT v;
++ HOST_WIDE_INT res;
++
++ v = TREE_INT_CST_LOW (arg0);
++ res = ((v >> 8) & 0xff)
++ | ((v & 0xff) << 8);
++
++ return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
++ }
++
++ return NULL_TREE;
++}
++
++/* Fold any constant argument for a swapb.4 instruction. */
++static tree
++ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist)
++{
++ tree arg0;
++
++ arg0 = TREE_VALUE (arglist);
++
++ /* Optimize constant value. */
++ if (TREE_CODE (arg0) == INTEGER_CST)
++ {
++ unsigned HOST_WIDE_INT v;
++ unsigned HOST_WIDE_INT res;
++
++ v = TREE_INT_CST_LOW (arg0);
++ res = ((v >> 24) & 0xff)
++ | (((v >> 16) & 0xff) << 8)
++ | (((v >> 8) & 0xff) << 16)
++ | ((v & 0xff) << 24);
++
++ return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0);
++ }
++
++ return NULL_TREE;
++}
++
++/* Fold any constant arguments for builtin functions. */
++static tree
++ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
++{
++ switch (DECL_FUNCTION_CODE (fndecl))
++ {
++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
++ return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist);
++
++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
++ return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist);
++
++ default:
++ return NULL;
++ }
++}
++
++/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to
++ tell the assembler to generate pointers to function descriptors in
++ some cases. */
++static bool
++ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p)
++{
++ if (TARGET_FDPIC && size == UNITS_PER_WORD)
++ {
++ if (GET_CODE (value) == SYMBOL_REF
++ && SYMBOL_REF_FUNCTION_P (value))
++ {
++ fputs ("\t.picptr\t%funcdesc(", asm_out_file);
++ output_addr_const (asm_out_file, value);
++ fputs (")\n", asm_out_file);
++ return true;
++ }
++
++ if (!aligned_p)
++ {
++ /* We've set the unaligned SI op to NULL, so we always have to
++ handle the unaligned case here. */
++ assemble_integer_with_op ("\t.4byte\t", value);
++ return true;
++ }
++ }
++
++ return default_assemble_integer (value, size, aligned_p);
++}
++
++/* If the constant I can be constructed by shifting a source-1 immediate
++ by a constant number of bits then return the bit count. If not
++ return 0. */
++
++int
++ubicom32_shiftable_const_int (int i)
++{
++ int shift = 0;
++
++ /* Note that any constant that can be represented as an immediate to
++ a movei instruction is automatically ignored here in the interests
++ of the clarity of the output asm code. */
++ if (i >= -32768 && i <= 32767)
++ return 0;
++
++ /* Find the number of trailing zeroes. We could use __builtin_ctz
++ here but it's not obvious if this is supported on all build
++ compilers so we err on the side of caution. */
++ if ((i & 0xffff) == 0)
++ {
++ shift += 16;
++ i >>= 16;
++ }
++
++ if ((i & 0xff) == 0)
++ {
++ shift += 8;
++ i >>= 8;
++ }
++
++ if ((i & 0xf) == 0)
++ {
++ shift += 4;
++ i >>= 4;
++ }
++
++ if ((i & 0x3) == 0)
++ {
++ shift += 2;
++ i >>= 2;
++ }
++
++ if ((i & 0x1) == 0)
++ {
++ shift += 1;
++ i >>= 1;
++ }
++
++ if (i >= -128 && i <= 127)
++ return shift;
++
++ return 0;
++}
++
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32.h
+@@ -0,0 +1,1564 @@
++/* Definitions of target machine for Ubicom32
++
++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
++ 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GCC.
++
++ GCC is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published
++ by the Free Software Foundation; either version 3, or (at your
++ option) any later version.
++
++ GCC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++ License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with GCC; see the file COPYING3. If not see
++ <http://www.gnu.org/licenses/>. */
++
++
++
++#define OBJECT_FORMAT_ELF
++
++/* Run-time target specifications. */
++
++/* Target CPU builtins. */
++#define TARGET_CPU_CPP_BUILTINS() \
++ do \
++ { \
++ builtin_define_std ("__UBICOM32__"); \
++ builtin_define_std ("__ubicom32__"); \
++ \
++ if (TARGET_FDPIC) \
++ { \
++ builtin_define ("__UBICOM32_FDPIC__"); \
++ builtin_define ("__FDPIC__"); \
++ } \
++ } \
++ while (0)
++
++#ifndef TARGET_DEFAULT
++#define TARGET_DEFAULT 0
++#endif
++
++extern int ubicom32_case_values_threshold;
++
++/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
++extern int ubicom32_v3;
++
++/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
++extern int ubicom32_v4;
++
++extern int ubicom32_stack_size;
++
++/* Flag for whether we can use calli instead of ret in returns. */
++extern int ubicom32_can_use_calli_to_ret;
++
++/* This macro is a C statement to print on `stderr' a string describing the
++ particular machine description choice. Every machine description should
++ define `TARGET_VERSION'. */
++#define TARGET_VERSION fprintf (stderr, " (UBICOM32)");
++
++/* We don't need a frame pointer to debug things. Doing this means
++ that gcc can turn on -fomit-frame-pointer when '-O' is specified. */
++#define CAN_DEBUG_WITHOUT_FP
++
++/* We need to handle processor-specific options. */
++#define OVERRIDE_OPTIONS ubicom32_override_options ()
++
++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
++ ubicom32_optimization_options (LEVEL, SIZE)
++
++/* For Ubicom32 the least significant bit has the lowest bit number
++ so we define this to be 0. */
++#define BITS_BIG_ENDIAN 0
++
++/* For Ubicom32 the most significant byte in a word has the lowest
++ number. */
++#define BYTES_BIG_ENDIAN 1
++
++/* For Ubicom32, in a multiword object, the most signifant word has the
++ lowest number. */
++#define WORDS_BIG_ENDIAN 1
++
++/* Ubicom32 has 8 bits per byte. */
++#define BITS_PER_UNIT 8
++
++/* Ubicom32 has 32 bits per word. */
++#define BITS_PER_WORD 32
++
++/* Width of a word, in units (bytes). */
++#define UNITS_PER_WORD 4
++
++/* Width of a pointer, in bits. */
++#define POINTER_SIZE 32
++
++/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use
++ SImode. */
++#define Pmode SImode
++
++/* Normal alignment required for function parameters on the stack, in
++ bits. */
++#define PARM_BOUNDARY 32
++
++/* We need to maintain the stack on a 32-bit boundary. */
++#define STACK_BOUNDARY 32
++
++/* Alignment required for a function entry point, in bits. */
++#define FUNCTION_BOUNDARY 32
++
++/* Alias for the machine mode used for memory references to functions being
++ called, in `call' RTL expressions. We use byte-oriented addresses
++ here. */
++#define FUNCTION_MODE QImode
++
++/* Biggest alignment that any data type can require on this machine,
++ in bits. */
++#define BIGGEST_ALIGNMENT 32
++
++/* this default to BIGGEST_ALIGNMENT unless defined */
++/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/
++#undef MAX_OFILE_ALIGNMENT
++#define MAX_OFILE_ALIGNMENT (128 * 8)
++
++/* Alignment in bits to be given to a structure bit field that follows an empty
++ field such as `int : 0;'. */
++#define EMPTY_FIELD_BOUNDARY 32
++
++/* All structures must be a multiple of 32 bits in size. */
++#define STRUCTURE_SIZE_BOUNDARY 32
++
++/* A bit-field declared as `int' forces `int' alignment for the struct. */
++#define PCC_BITFIELD_TYPE_MATTERS 1
++
++/* For Ubicom32 we absolutely require that data be aligned with nominal
++ alignment. */
++#define STRICT_ALIGNMENT 1
++
++/* Make strcpy of constants fast. */
++#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
++ (TREE_CODE (EXP) == STRING_CST \
++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
++
++/* Define this macro as an expression for the alignment of a structure
++ (given by STRUCT as a tree node) if the alignment computed in the
++ usual way is COMPUTED and the alignment explicitly specified was
++ SPECIFIED. */
++#define DATA_ALIGNMENT(TYPE, ALIGN) \
++ ((((ALIGN) < BITS_PER_WORD) \
++ && (TREE_CODE (TYPE) == ARRAY_TYPE \
++ || TREE_CODE (TYPE) == UNION_TYPE \
++ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
++
++#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN)
++
++/* For Ubicom32 we default to unsigned chars. */
++#define DEFAULT_SIGNED_CHAR 0
++
++/* Machine-specific data register numbers. */
++#define FIRST_DATA_REGNUM 0
++#define D10_REGNUM 10
++#define D11_REGNUM 11
++#define D12_REGNUM 12
++#define D13_REGNUM 13
++#define LAST_DATA_REGNUM 15
++
++/* Machine-specific address register numbers. */
++#define FIRST_ADDRESS_REGNUM 16
++#define LAST_ADDRESS_REGNUM 22
++
++/* Register numbers used for passing a function's static chain pointer. If
++ register windows are used, the register number as seen by the called
++ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
++ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
++ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
++
++ The static chain register need not be a fixed register.
++
++ If the static chain is passed in memory, these macros should not be defined;
++ instead, the next two macros should be defined. */
++#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
++
++/* The register number of the frame pointer register, which is used to access
++ automatic variables in the stack frame. We generally eliminate this anyway
++ for Ubicom32 but we make it A6 by default. */
++#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM)
++
++/* The register number of the stack pointer register, which is also be a
++ fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't
++ have a hardware requirement about which register this is, but by convention
++ we use A7. */
++#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
++
++/* Machine-specific accumulator register numbers. */
++#define ACC0_HI_REGNUM 24
++#define ACC0_LO_REGNUM 25
++#define ACC1_HI_REGNUM 26
++#define ACC1_LO_REGNUM 27
++
++/* source3 register number */
++#define SOURCE3_REGNUM 28
++
++/* The register number of the arg pointer register, which is used to access the
++ function's argument list. On some machines, this is the same as the frame
++ pointer register. On some machines, the hardware determines which register
++ this is. On other machines, you can choose any register you wish for this
++ purpose. If this is not the same register as the frame pointer register,
++ then you must mark it as a fixed register according to `FIXED_REGISTERS', or
++ arrange to be able to eliminate it. */
++#define ARG_POINTER_REGNUM 29
++
++/* Pseudo-reg for condition code. */
++#define CC_REGNUM 30
++
++/* Interrupt set/clear registers. */
++#define INT_SET0_REGNUM 31
++#define INT_SET1_REGNUM 32
++#define INT_CLR0_REGNUM 33
++#define INT_CLR1_REGNUM 34
++
++/* Scratchpad registers. */
++#define SCRATCHPAD0_REGNUM 35
++#define SCRATCHPAD1_REGNUM 36
++#define SCRATCHPAD2_REGNUM 37
++#define SCRATCHPAD3_REGNUM 38
++
++/* FDPIC register. */
++#define FDPIC_REGNUM 16
++
++/* Number of hardware registers known to the compiler. They receive numbers 0
++ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
++ really is assigned the number `FIRST_PSEUDO_REGISTER'. */
++#define FIRST_PSEUDO_REGISTER 39
++
++/* An initializer that says which registers are used for fixed purposes all
++ throughout the compiled code and are therefore not available for general
++ allocation. These would include the stack pointer, the frame pointer
++ (except on machines where that can be used as a general register when no
++ frame pointer is needed), the program counter on machines where that is
++ considered one of the addressable registers, and any other numbered register
++ with a standard use.
++
++ This information is expressed as a sequence of numbers, separated by commas
++ and surrounded by braces. The Nth number is 1 if register N is fixed, 0
++ otherwise.
++
++ The table initialized from this macro, and the table initialized by the
++ following one, may be overridden at run time either automatically, by the
++ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
++ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
++#define FIXED_REGISTERS \
++ { \
++ 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \
++ 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \
++ 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \
++ 0, 0, /* acc0 hi/lo */ \
++ 0, 0, /* acc1 hi/lo */ \
++ 0, /* source3 */ \
++ 1, /* arg */ \
++ 1, /* cc */ \
++ 1, 1, /* int_set[01] */ \
++ 1, 1, /* int_clr[01] */ \
++ 1, 1, 1, 1 /* scratchpad[0123] */ \
++ }
++
++/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
++ general) by function calls as well as for fixed registers. This macro
++ therefore identifies the registers that are not available for general
++ allocation of values that must live across function calls.
++
++ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
++ saves it on function entry and restores it on function exit, if the register
++ is used within the function. */
++#define CALL_USED_REGISTERS \
++ { \
++ 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \
++ 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \
++ 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \
++ 1, 1, /* acc0 hi/lo */ \
++ 1, 1, /* acc1 hi/lo */ \
++ 1, /* source3 */ \
++ 1, /* arg */ \
++ 1, /* cc */ \
++ 1, 1, /* int_set[01] */ \
++ 1, 1, /* int_clr[01] */ \
++ 1, 1, 1, 1 /* scratchpad[0123] */ \
++ }
++
++/* How to refer to registers in assembler output.
++ This sequence is indexed by compiler's hard-register-number (see above). */
++
++/* A C initializer containing the assembler's names for the machine registers,
++ each one as a C string constant. This is what translates register numbers
++ in the compiler into assembler language. */
++#define REGISTER_NAMES \
++ { \
++ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
++ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \
++ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
++ "acc0_hi", "acc0_lo", \
++ "acc1_hi", "acc1_lo", \
++ "source3", \
++ "arg", \
++ "cc", \
++ "int_set0", "int_set1", \
++ "int_clr0", "int_clr1", \
++ "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \
++ }
++
++#define CONDITIONAL_REGISTER_USAGE \
++ ubicom32_conditional_register_usage ();
++
++/* Order of allocation of registers. */
++
++/* If defined, an initializer for a vector of integers, containing the numbers
++ of hard registers in the order in which GNU CC should prefer to use them
++ (from most preferred to least).
++
++ For Ubicom32 we try using caller-clobbered data registers first, then
++ callee-saved data registers, then caller-clobbered address registers,
++ then callee-saved address registers and finally everything else.
++
++ The caller-clobbered registers are usually slightly cheaper to use because
++ there's no need to save/restore. */
++#define REG_ALLOC_ORDER \
++ { \
++ 0, 1, 2, 3, 4, /* d0 - d4 */ \
++ 5, 6, 7, 8, 9, /* d5 - d9 */ \
++ 14, /* d14 */ \
++ 10, 11, 12, 13, /* d10 - d13 */ \
++ 19, 20, 16, 21, /* a3, a4, a0, a5 */ \
++ 17, 18, 22, /* a1, a2, a6 */ \
++ 24, 25, /* acc0 hi/lo */ \
++ 26, 27, /* acc0 hi/lo */ \
++ 28 /* source3 */ \
++ }
++
++/* C expression for the number of consecutive hard registers, starting at
++ register number REGNO, required to hold a value of mode MODE. */
++#define HARD_REGNO_NREGS(REGNO, MODE) \
++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
++
++/* Most registers can hold QImode, HImode and SImode values but we have to
++ be able to indicate any hard registers that cannot hold values with some
++ modes. */
++#define HARD_REGNO_MODE_OK(REGNO, MODE) \
++ ubicom32_hard_regno_mode_ok(REGNO, MODE)
++
++/* We can rename most registers aside from the FDPIC register if we're using
++ FDPIC. */
++#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1)
++
++/* A C expression that is nonzero if it is desirable to choose register
++ allocation so as to avoid move instructions between a value of mode MODE1
++ and a value of mode MODE2.
++
++ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
++ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
++ zero. */
++#define MODES_TIEABLE_P(MODE1, MODE2) 1
++
++/* An enumeral type that must be defined with all the register class names as
++ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
++ register class, followed by one more enumeral value, `LIM_REG_CLASSES',
++ which is not a register class but rather tells how many classes there are.
++
++ Each register class has a number, which is the value of casting the class
++ name to type `int'. The number serves as an index in many of the tables
++ described below. */
++
++enum reg_class
++{
++ NO_REGS,
++ DATA_REGS,
++ FDPIC_REG,
++ ADDRESS_REGS,
++ ALL_ADDRESS_REGS,
++ ACC_LO_REGS,
++ ACC_REGS,
++ CC_REG,
++ DATA_ACC_REGS,
++ SOURCE3_REG,
++ SPECIAL_REGS,
++ GENERAL_REGS,
++ ALL_REGS,
++ LIM_REG_CLASSES
++};
++
++/* The number of distinct register classes. */
++#define N_REG_CLASSES (int) LIM_REG_CLASSES
++
++/* An initializer containing the names of the register classes as C string
++ constants. These names are used in writing some of the debugging dumps. */
++
++#define REG_CLASS_NAMES \
++{ \
++ "NO_REGS", \
++ "DATA_REGS", \
++ "FDPIC_REG", \
++ "ADDRESS_REGS", \
++ "ALL_ADDRESS_REGS", \
++ "ACC_LO_REGS", \
++ "ACC_REGS", \
++ "CC_REG", \
++ "DATA_ACC_REGS", \
++ "SOURCE3_REG", \
++ "SPECIAL_REGS", \
++ "GENERAL_REGS", \
++ "ALL_REGS", \
++ "LIM_REGS" \
++}
++
++/* An initializer containing the contents of the register classes, as integers
++ which are bit masks. The Nth integer specifies the contents of class N.
++ The way the integer MASK is interpreted is that register R is in the class
++ if `MASK & (1 << R)' is 1.
++
++ When the machine has more than 32 registers, an integer does not suffice.
++ Then the integers are replaced by sub-initializers, braced groupings
++ containing several integers. Each sub-initializer must be suitable as an
++ initializer for the type `HARD_REG_SET' which is defined in
++ `hard-reg-set.h'. */
++#define REG_CLASS_CONTENTS \
++{ \
++ {0x00000000, 0x00000000}, /* No regs */ \
++ {0x0000ffff, 0x00000000}, /* DATA_REGS */ \
++ {0x00010000, 0x00000000}, /* FDPIC_REG */ \
++ {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \
++ {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \
++ {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \
++ {0x0f000000, 0x00000000}, /* ACC_REGS */ \
++ {0x40000000, 0x00000000}, /* CC_REG */ \
++ {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \
++ {0x10000000, 0x00000000}, /* SOURGE3_REG */ \
++ {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \
++ {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \
++ {0xbfffffff, 0x0000007f} /* ALL_REGS */ \
++}
++
++extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER];
++
++/* A C expression whose value is a register class containing hard register
++ REGNO. In general there is more than one such class; choose a class which
++ is "minimal", meaning that no smaller class also contains the register. */
++#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO])
++
++#define IRA_COVER_CLASSES \
++{ \
++ GENERAL_REGS, \
++ LIM_REG_CLASSES \
++}
++
++/* Ubicom32 base registers must be address registers since addresses can
++ only be reached via address registers. */
++#define BASE_REG_CLASS ALL_ADDRESS_REGS
++
++/* Ubicom32 index registers must be data registers since we cannot add
++ two address registers together to form an address. */
++#define INDEX_REG_CLASS DATA_REGS
++
++/* A C expression which is nonzero if register number NUM is suitable for use
++ as a base register in operand addresses. It may be either a suitable hard
++ register or a pseudo register that has been allocated such a hard register. */
++
++#ifndef REG_OK_STRICT
++#define REGNO_OK_FOR_BASE_P(regno) \
++ ubicom32_regno_ok_for_base_p (regno, 0)
++#else
++#define REGNO_OK_FOR_BASE_P(regno) \
++ ubicom32_regno_ok_for_base_p (regno, 1)
++#endif
++
++/* A C expression which is nonzero if register number NUM is suitable for use
++ as an index register in operand addresses. It may be either a suitable hard
++ register or a pseudo register that has been allocated such a hard register.
++
++ The difference between an index register and a base register is that the
++ index register may be scaled. If an address involves the sum of two
++ registers, neither one of them scaled, then either one may be labeled the
++ "base" and the other the "index"; but whichever labeling is used must fit
++ the machine's constraints of which registers may serve in each capacity.
++ The compiler will try both labelings, looking for one that is valid, and
++ will reload one or both registers only if neither labeling works. */
++#ifndef REG_OK_STRICT
++#define REGNO_OK_FOR_INDEX_P(regno) \
++ ubicom32_regno_ok_for_index_p (regno, 0)
++#else
++#define REGNO_OK_FOR_INDEX_P(regno) \
++ ubicom32_regno_ok_for_index_p (regno, 1)
++#endif
++
++/* Attempt to restrict the register class we need to copy value X intoto the
++ would-be register class CLASS. Most things are fine for Ubicom32 but we
++ have to restrict certain types of address loads. */
++#define PREFERRED_RELOAD_CLASS(X, CLASS) \
++ ubicom32_preferred_reload_class (X, CLASS)
++
++/* A C expression for the maximum number of consecutive registers of
++ class CLASS needed to hold a value of mode MODE. For Ubicom32 this
++ is pretty much identical to HARD_REGNO_NREGS. */
++#define CLASS_MAX_NREGS(CLASS, MODE) \
++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
++
++/* For Ubicom32 the stack grows downwards when we push a word onto the stack
++ - i.e. it moves to a smaller address. */
++#define STACK_GROWS_DOWNWARD 1
++
++/* Offset from the frame pointer to the first local variable slot to
++ be allocated. */
++#define STARTING_FRAME_OFFSET 0
++
++/* Offset from the argument pointer register to the first argument's
++ address. */
++#define FIRST_PARM_OFFSET(FNDECL) 0
++
++/* A C expression whose value is RTL representing the value of the return
++ address for the frame COUNT steps up from the current frame, after the
++ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
++ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
++ defined.
++
++ The value of the expression must always be the correct address when COUNT is
++ zero, but may be `NULL_RTX' if there is not way to determine the return
++ address of other frames. */
++#define RETURN_ADDR_RTX(COUNT, FRAME) \
++ ubicom32_return_addr_rtx (COUNT, FRAME)
++
++/* Register That Address the Stack Frame. */
++
++/* We don't actually require a frame pointer in most functions with the
++ Ubicom32 architecture so we allow it to be eliminated. */
++#define FRAME_POINTER_REQUIRED 0
++
++/* Macro that defines a table of register pairs used to eliminate unecessary
++ registers that point into the stack frame.
++
++ For Ubicom32 we don't generally need an arg pointer of a frame pointer
++ so we allow the arg pointer to be replaced by either the frame pointer or
++ the stack pointer. We also allow the frame pointer to be replaced by
++ the stack pointer. */
++#define ELIMINABLE_REGS \
++{ \
++ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
++}
++
++/* Let the compiler know that we want to use the ELIMINABLE_REGS macro
++ above. */
++#define CAN_ELIMINATE(FROM, TO) 1
++
++/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
++ initial difference between the specified pair of registers. This macro must
++ be defined if `ELIMINABLE_REGS' is defined. */
++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
++ (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO)
++
++/* If defined, the maximum amount of space required for outgoing arguments will
++ be computed and placed into the variable
++ `current_function_outgoing_args_size'. No space will be pushed onto the
++ stack for each call; instead, the function prologue should increase the
++ stack frame size by this amount.
++
++ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
++ proper. */
++#define ACCUMULATE_OUTGOING_ARGS 1
++
++/* Define this macro if functions should assume that stack space has been
++ allocated for arguments even when their values are passed in registers.
++
++ The value of this macro is the size, in bytes, of the area reserved for
++ arguments passed in registers for the function represented by FNDECL.
++
++ This space can be allocated by the caller, or be a part of the
++ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
++ which. */
++#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL)
++
++/* A C expression that should indicate the number of bytes of its own arguments
++ that a function pops on returning, or 0 if the function pops no arguments
++ and the caller must therefore pop them all after the function returns.
++
++ FUNDECL is a C variable whose value is a tree node that describes the
++ function in question. Normally it is a node of type `FUNCTION_DECL' that
++ describes the declaration of the function. From this it is possible to
++ obtain the DECL_MACHINE_ATTRIBUTES of the function.
++
++ FUNTYPE is a C variable whose value is a tree node that describes the
++ function in question. Normally it is a node of type `FUNCTION_TYPE' that
++ describes the data type of the function. From this it is possible to obtain
++ the data types of the value and arguments (if known).
++
++ When a call to a library function is being considered, FUNTYPE will contain
++ an identifier node for the library function. Thus, if you need to
++ distinguish among various library functions, you can do so by their names.
++ Note that "library function" in this context means a function used to
++ perform arithmetic, whose name is known specially in the compiler and was
++ not mentioned in the C code being compiled.
++
++ STACK-SIZE is the number of bytes of arguments passed on the stack. If a
++ variable number of bytes is passed, it is zero, and argument popping will
++ always be the responsibility of the calling function.
++
++ On the Vax, all functions always pop their arguments, so the definition of
++ this macro is STACK-SIZE. On the 68000, using the standard calling
++ convention, no functions pop their arguments, so the value of the macro is
++ always 0 in this case. But an alternative calling convention is available
++ in which functions that take a fixed number of arguments pop them but other
++ functions (such as `printf') pop nothing (the caller pops all). When this
++ convention is in use, FUNTYPE is examined to determine whether a function
++ takes a fixed number of arguments. */
++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
++
++/* A C expression that controls whether a function argument is passed in a
++ register, and which register.
++
++ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
++ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
++ arguments so far passed in registers; MODE, the machine mode of the argument;
++ TYPE, the data type of the argument as a tree node or 0 if that is not known
++ (which happens for C support library functions); and NAMED, which is 1 for an
++ ordinary argument and 0 for nameless arguments that correspond to `...' in the
++ called function's prototype.
++
++ The value of the expression should either be a `reg' RTX for the hard
++ register in which to pass the argument, or zero to pass the argument on the
++ stack.
++
++ For machines like the Vax and 68000, where normally all arguments are
++ pushed, zero suffices as a definition.
++
++ The usual way to make the ANSI library `stdarg.h' work on a machine where
++ some arguments are usually passed in registers, is to cause nameless
++ arguments to be passed on the stack instead. This is done by making
++ `FUNCTION_ARG' return 0 whenever NAMED is 0.
++
++ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
++ this macro to determine if this argument is of a type that must be passed in
++ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
++ returns non-zero for such an argument, the compiler will abort. If
++ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
++ stack and then loaded into a register. */
++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
++ function_arg (&CUM, MODE, TYPE, NAMED)
++
++#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
++ function_incoming_arg (&CUM, MODE, TYPE, NAMED)
++
++/* A C expression for the number of words, at the beginning of an argument,
++ must be put in registers. The value must be zero for arguments that are
++ passed entirely in registers or that are entirely pushed on the stack.
++
++ On some machines, certain arguments must be passed partially in registers
++ and partially in memory. On these machines, typically the first N words of
++ arguments are passed in registers, and the rest on the stack. If a
++ multi-word argument (a `double' or a structure) crosses that boundary, its
++ first few words must be passed in registers and the rest must be pushed.
++ This macro tells the compiler when this occurs, and how many of the words
++ should go in registers.
++
++ `FUNCTION_ARG' for these arguments should return the first register to be
++ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
++ the called function. */
++
++/* A C expression that indicates when an argument must be passed by reference.
++ If nonzero for an argument, a copy of that argument is made in memory and a
++ pointer to the argument is passed instead of the argument itself. The
++ pointer is passed in whatever way is appropriate for passing a pointer to
++ that type.
++
++ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
++ definition of this macro might be
++ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
++ MUST_PASS_IN_STACK (MODE, TYPE) */
++
++/* If defined, a C expression that indicates when it is the called function's
++ responsibility to make a copy of arguments passed by invisible reference.
++ Normally, the caller makes a copy and passes the address of the copy to the
++ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
++ nonzero, the caller does not make a copy. Instead, it passes a pointer to
++ the "live" value. The called function must not modify this value. If it
++ can be determined that the value won't be modified, it need not make a copy;
++ otherwise a copy must be made. */
++
++/* A C type for declaring a variable that is used as the first argument of
++ `FUNCTION_ARG' and other related values. For some target machines, the type
++ `int' suffices and can hold the number of bytes of argument so far.
++
++ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
++ that have been passed on the stack. The compiler has other variables to
++ keep track of that. For target machines on which all arguments are passed
++ on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
++ however, the data structure must exist and should not be empty, so use
++ `int'. */
++struct cum_arg
++{
++ int nbytes;
++ int reg;
++ int stdarg;
++};
++#define CUMULATIVE_ARGS struct cum_arg
++
++/* A C statement (sans semicolon) for initializing the variable CUM for the
++ state at the beginning of the argument list. The variable has type
++ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
++ of the function which will receive the args, or 0 if the args are to a
++ compiler support library function. The value of INDIRECT is nonzero when
++ processing an indirect call, for example a call through a function pointer.
++ The value of INDIRECT is zero for a call to an explicitly named function, a
++ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
++ arguments for the function being compiled.
++
++ When processing a call to a compiler support library function, LIBNAME
++ identifies which one. It is a `symbol_ref' rtx which contains the name of
++ the function, as a string. LIBNAME is 0 when an ordinary C function call is
++ being processed. Thus, each time this macro is called, either LIBNAME or
++ FNTYPE is nonzero, but never both of them at once. */
++
++#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \
++ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT);
++
++/* A C statement (sans semicolon) to update the summarizer variable CUM to
++ advance past an argument in the argument list. The values MODE, TYPE and
++ NAMED describe that argument. Once this is done, the variable CUM is
++ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
++
++ This macro need not do anything if the argument in question was passed on
++ the stack. The compiler knows how to track the amount of stack space used
++ for arguments without any special help. */
++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
++ ((CUM).nbytes += ((MODE) != BLKmode \
++ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
++ : (int_size_in_bytes (TYPE) + 3) & ~3))
++
++/* For the Ubicom32 we define the upper function argument register here. */
++#define UBICOM32_FUNCTION_ARG_REGS 10
++
++/* A C expression that is nonzero if REGNO is the number of a hard register in
++ which function arguments are sometimes passed. This does *not* include
++ implicit arguments such as the static chain and the structure-value address.
++ On many machines, no registers can be used for this purpose since all
++ function arguments are pushed on the stack. */
++#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS)
++
++
++/* How Scalar Function Values are Returned. */
++
++/* The number of the hard register that is used to return a scalar value from a
++ function call. */
++#define RETURN_VALUE_REGNUM 0
++
++/* A C expression to create an RTX representing the place where a function
++ returns a value of data type VALTYPE. VALTYPE is a tree node representing a
++ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
++ represent that type. On many machines, only the mode is relevant.
++ (Actually, on most machines, scalar values are returned in the same place
++ regardless of mode).
++
++ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
++ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
++
++ If the precise function being called is known, FUNC is a tree node
++ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
++ possible to use a different value-returning convention for specific
++ functions when all their calls are known.
++
++ `FUNCTION_VALUE' is not used for return vales with aggregate data types,
++ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
++ related macros, below. */
++#define FUNCTION_VALUE(VALTYPE, FUNC) \
++ gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM)
++
++/* A C expression to create an RTX representing the place where a library
++ function returns a value of mode MODE.
++
++ Note that "library function" in this context means a compiler support
++ routine, used to perform arithmetic, whose name is known specially by the
++ compiler and was not mentioned in the C code being compiled.
++
++ The definition of `LIBRARY_VALUE' need not be concerned aggregate data
++ types, because none of the library functions returns such types. */
++#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
++
++/* A C expression that is nonzero if REGNO is the number of a hard register in
++ which the values of called function may come back.
++
++ A register whose use for returning values is limited to serving as the
++ second of a pair (for a value of type `double', say) need not be recognized
++ by this macro. So for most machines, this definition suffices:
++
++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
++
++ If the machine has register windows, so that the caller and the called
++ function use different registers for the return value, this macro should
++ recognize only the caller's register numbers. */
++#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM)
++
++
++/* How Large Values are Returned. */
++
++/* A C expression which can inhibit the returning of certain function values in
++ registers, based on the type of value. A nonzero value says to return the
++ function value in memory, just as large structures are always returned.
++ Here TYPE will be a C expression of type `tree', representing the data type
++ of the value.
++
++ Note that values of mode `BLKmode' must be explicitly handled by this macro.
++ Also, the option `-fpcc-struct-return' takes effect regardless of this
++ macro. On most systems, it is possible to leave the macro undefined; this
++ causes a default definition to be used, whose value is the constant 1 for
++ `BLKmode' values, and 0 otherwise.
++
++ Do not use this macro to indicate that structures and unions should always
++ be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN'
++ to indicate this. */
++#define RETURN_IN_MEMORY(TYPE) \
++ (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
++
++/* Define this macro to be 1 if all structure and union return values must be
++ in memory. Since this results in slower code, this should be defined only
++ if needed for compatibility with other compilers or with an ABI. If you
++ define this macro to be 0, then the conventions used for structure and union
++ return values are decided by the `RETURN_IN_MEMORY' macro.
++
++ If not defined, this defaults to the value 1. */
++#define DEFAULT_PCC_STRUCT_RETURN 0
++
++/* If the structure value address is not passed in a register, define
++ `STRUCT_VALUE' as an expression returning an RTX for the place
++ where the address is passed. If it returns 0, the address is
++ passed as an "invisible" first argument. */
++#define STRUCT_VALUE 0
++
++/* Define this macro as a C expression that is nonzero if the return
++ instruction or the function epilogue ignores the value of the stack pointer;
++ in other words, if it is safe to delete an instruction to adjust the stack
++ pointer before a return from the function.
++
++ Note that this macro's value is relevant only for functions for which frame
++ pointers are maintained. It is never safe to delete a final stack
++ adjustment in a function that has no frame pointer, and the compiler knows
++ this regardless of `EXIT_IGNORE_STACK'. */
++#define EXIT_IGNORE_STACK 1
++
++/* A C statement or compound statement to output to FILE some assembler code to
++ call the profiling subroutine `mcount'. Before calling, the assembler code
++ must load the address of a counter variable into a register where `mcount'
++ expects to find the address. The name of this variable is `LP' followed by
++ the number LABELNO, so you would generate the name using `LP%d' in a
++ `fprintf'.
++
++ The details of how the address should be passed to `mcount' are determined
++ by your operating system environment, not by GNU CC. To figure them out,
++ compile a small program for profiling using the system's installed C
++ compiler and look at the assembler code that results.
++
++ This declaration must be present, but it can be an abort if profiling is
++ not implemented. */
++
++#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno)
++
++/* A C statement to output, on the stream FILE, assembler code for a block of
++ data that contains the constant parts of a trampoline. This code should not
++ include a label--the label is taken care of automatically. */
++#if 0
++#define TRAMPOLINE_TEMPLATE(FILE) \
++ do { \
++ fprintf (FILE, "\tadd -4,sp\n"); \
++ fprintf (FILE, "\t.long 0x0004fffa\n"); \
++ fprintf (FILE, "\tmov (0,sp),a0\n"); \
++ fprintf (FILE, "\tadd 4,sp\n"); \
++ fprintf (FILE, "\tmov (13,a0),a1\n"); \
++ fprintf (FILE, "\tmov (17,a0),a0\n"); \
++ fprintf (FILE, "\tjmp (a0)\n"); \
++ fprintf (FILE, "\t.long 0\n"); \
++ fprintf (FILE, "\t.long 0\n"); \
++ } while (0)
++#endif
++
++/* A C expression for the size in bytes of the trampoline, as an integer. */
++#define TRAMPOLINE_SIZE 0x1b
++
++/* Alignment required for trampolines, in bits.
++
++ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
++ aligning trampolines. */
++#define TRAMPOLINE_ALIGNMENT 32
++
++/* A C statement to initialize the variable parts of a trampoline. ADDR is an
++ RTX for the address of the trampoline; FNADDR is an RTX for the address of
++ the nested function; STATIC_CHAIN is an RTX for the static chain value that
++ should be passed to the function when it is called. */
++#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
++{ \
++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
++ (CXT)); \
++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
++ (FNADDR)); \
++}
++
++/* Ubicom32 supports pre and post increment/decrement addressing. */
++#define HAVE_POST_INCREMENT 1
++#define HAVE_PRE_INCREMENT 1
++#define HAVE_POST_DECREMENT 1
++#define HAVE_PRE_DECREMENT 1
++
++/* Ubicom32 supports pre and post address side-effects with constants
++ other than the size of the memory operand. */
++#define HAVE_PRE_MODIFY_DISP 1
++#define HAVE_POST_MODIFY_DISP 1
++
++/* A C expression that is 1 if the RTX X is a constant which is a valid
++ address. On most machines, this can be defined as `CONSTANT_P (X)',
++ but a few machines are more restrictive in which constant addresses
++ are supported.
++
++ `CONSTANT_P' accepts integer-values expressions whose values are not
++ explicitly known, such as `symbol_ref', `label_ref', and `high'
++ expressions and `const' arithmetic expressions, in addition to
++ `const_int' and `const_double' expressions. */
++#define CONSTANT_ADDRESS_P(X) \
++ (GET_CODE (X) == LABEL_REF \
++ || (GET_CODE (X) == CONST \
++ && GET_CODE (XEXP (X, 0)) == PLUS \
++ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF))
++
++/* Ubicom32 supports a maximum of 2 registers in a valid memory address.
++ One is always an address register while a second, optional, one may be a
++ data register. */
++#define MAX_REGS_PER_ADDRESS 2
++
++/* A C compound statement with a conditional `goto LABEL;' executed if X (an
++ RTX) is a legitimate memory address on the target machine for a memory
++ operand of mode MODE.
++
++ It usually pays to define several simpler macros to serve as subroutines for
++ this one. Otherwise it may be too complicated to understand.
++
++ This macro must exist in two variants: a strict variant and a non-strict
++ one. The strict variant is used in the reload pass. It must be defined so
++ that any pseudo-register that has not been allocated a hard register is
++ considered a memory reference. In contexts where some kind of register is
++ required, a pseudo-register with no hard register must be rejected.
++
++ The non-strict variant is used in other passes. It must be defined to
++ accept all pseudo-registers in every context where some kind of register is
++ required.
++
++ Compiler source files that want to use the strict variant of this macro
++ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
++ conditional to define the strict variant in that case and the non-strict
++ variant otherwise.
++
++ Subroutines to check for acceptable registers for various purposes (one for
++ base registers, one for index registers, and so on) are typically among the
++ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
++ subroutine macros need have two variants; the higher levels of macros may be
++ the same whether strict or not.
++
++ Normally, constant addresses which are the sum of a `symbol_ref' and an
++ integer are stored inside a `const' RTX to mark them as constant.
++ Therefore, there is no need to recognize such sums specifically as
++ legitimate addresses. Normally you would simply recognize any `const' as
++ legitimate.
++
++ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
++ are not marked with `const'. It assumes that a naked `plus' indicates
++ indexing. If so, then you *must* reject such naked constant sums as
++ illegitimate addresses, so that none of them will be given to
++ `PRINT_OPERAND_ADDRESS'.
++
++ On some machines, whether a symbolic address is legitimate depends on the
++ section that the address refers to. On these machines, define the macro
++ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
++ then check for it here. When you see a `const', you will have to look
++ inside it to find the `symbol_ref' in order to determine the section.
++
++ The best way to modify the name string is by adding text to the beginning,
++ with suitable punctuation to prevent any ambiguity. Allocate the new name
++ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
++ remove and decode the added text and output the name accordingly, and define
++ `STRIP_NAME_ENCODING' to access the original name string.
++
++ You can check the information stored here into the `symbol_ref' in the
++ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
++ `PRINT_OPERAND_ADDRESS'. */
++/* On the ubicom32, the value in the address register must be
++ in the same memory space/segment as the effective address.
++
++ This is problematical for reload since it does not understand
++ that base+index != index+base in a memory reference. */
++
++#ifdef REG_OK_STRICT
++#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
++ if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR;
++#else
++#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
++ if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR;
++#endif
++
++/* Try machine-dependent ways of modifying an illegitimate address
++ to be legitimate. If we find one, return the new, valid address.
++ This macro is used in only one place: `memory_address' in explow.c.
++
++ OLDX is the address as it was before break_out_memory_refs was called.
++ In some cases it is useful to look at this to decide what needs to be done.
++
++ MODE and WIN are passed so that this macro can use
++ GO_IF_LEGITIMATE_ADDRESS.
++
++ It is always safe for this macro to do nothing. It exists to recognize
++ opportunities to optimize the output.
++
++ On RS/6000, first check for the sum of a register with a constant
++ integer that is out of range. If so, generate code to add the
++ constant with the low-order 16 bits masked to the register and force
++ this result into another register (this can be done with `cau').
++ Then generate an address of REG+(CONST&0xffff), allowing for the
++ possibility of bit 16 being a one.
++
++ Then check for the sum of a register and something not constant, try to
++ load the other things into a register and return the sum. */
++
++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
++{ \
++ rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \
++ if (result != NULL_RTX) \
++ { \
++ (X) = result; \
++ goto WIN; \
++ } \
++}
++
++/* Try a machine-dependent way of reloading an illegitimate address
++ operand. If we find one, push the reload and jump to WIN. This
++ macro is used in only one place: `find_reloads_address' in reload.c. */
++#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
++{ \
++ rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \
++ if (new_rtx) \
++ { \
++ (AD) = new_rtx; \
++ goto WIN; \
++ } \
++}
++
++/* A C statement or compound statement with a conditional `goto LABEL;'
++ executed if memory address X (an RTX) can have different meanings depending
++ on the machine mode of the memory reference it is used for or if the address
++ is valid for some modes but not others.
++
++ Autoincrement and autodecrement addresses typically have mode-dependent
++ effects because the amount of the increment or decrement is the size of the
++ operand being addressed. Some machines have other mode-dependent addresses.
++ Many RISC machines have no mode-dependent addresses.
++
++ You may assume that ADDR is a valid address for the machine. */
++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
++ if (ubicom32_mode_dependent_address_p (ADDR)) \
++ goto LABEL;
++
++/* A C expression that is nonzero if X is a legitimate constant for an
++ immediate operand on the target machine. You can assume that X
++ satisfies `CONSTANT_P', so you need not check this. In fact, `1' is
++ a suitable definition for this macro on machines where anything
++ `CONSTANT_P' is valid. */
++#define LEGITIMATE_CONSTANT_P(X) \
++ ubicom32_legitimate_constant_p ((X))
++
++/* Moves between registers are pretty-much single instructions for
++ Ubicom32. We make this the default "2" that gcc likes. */
++#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
++
++/* This is a little bit of magic from the S390 port that wins 2% on code
++ size when building the Linux kernel! Unfortunately while it wins on
++ that size the user-space apps built using FD-PIC don't improve and the
++ performance is lower because we put more pressure on the caches. We may
++ want this back on some future CPU that has higher cache performance. */
++/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */
++
++/* Moves between registers and memory are more expensive than between
++ registers because we have caches and write buffers that slow things
++ down! */
++#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2
++
++/* A fall-through branch is very low cost but anything that changes the PC
++ incurs a major pipeline hazard. We don't make the full extent of this
++ hazard visible because we hope that multiple threads will absorb much
++ of the cost and so we don't want a jump being replaced with, say, 7
++ instructions. */
++#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
++ ((PREDICTABLE_P) ? 1 : 3)
++
++/* Define this macro as a C expression which is nonzero if accessing less than
++ a word of memory (i.e. a `char' or a `short') is no faster than accessing a
++ word of memory, i.e., if such access require more than one instruction or if
++ there is no difference in cost between byte and (aligned) word loads.
++
++ When this macro is not defined, the compiler will access a field by finding
++ the smallest containing object; when it is defined, a fullword load will be
++ used if alignment permits. Unless bytes accesses are faster than word
++ accesses, using word accesses is preferable since it may eliminate
++ subsequent memory access if subsequent accesses occur to other fields in the
++ same word of the structure, but to different bytes. */
++#define SLOW_BYTE_ACCESS 0
++
++/* The number of scalar move insns which should be generated instead of a
++ string move insn or a library call. Increasing the value will always make
++ code faster, but eventually incurs high cost in increased code size.
++
++ If you don't define this, a reasonable default is used. */
++/* According to expr.c, a value of around 6 should minimize code size. */
++#define MOVE_RATIO(SPEED) 6
++
++/* We're much better off calling a constant function address with the
++ Ubicom32 architecture because we have an opcode for doing so. Don't
++ let the compiler extract function addresses as common subexpressions
++ into an address register. */
++#define NO_FUNCTION_CSE
++
++#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y)
++
++#define REVERSIBLE_CC_MODE(MODE) 1
++
++/* Canonicalize a comparison from one we don't have to one we do have. */
++#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
++ ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
++
++/* Dividing the output into sections. */
++
++/* A C expression whose value is a string containing the assembler operation
++ that should precede instructions and read-only data. Normally `".text"' is
++ right. */
++#define TEXT_SECTION_ASM_OP "\t.section .text"
++
++/* A C expression whose value is a string containing the assembler operation to
++ identify the following data as writable initialized data. Normally
++ `".data"' is right. */
++#define DATA_SECTION_ASM_OP "\t.section .data"
++
++
++/* If defined, a C expression whose value is a string containing the
++ assembler operation to identify the following data as
++ uninitialized global data. If not defined, and neither
++ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
++ uninitialized global data will be output in the data section if
++ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
++ used. */
++#define BSS_SECTION_ASM_OP "\t.section .bss"
++
++/* This is how we tell the assembler that a symbol is weak. */
++
++#define ASM_WEAKEN_LABEL(FILE, NAME) \
++ do \
++ { \
++ fputs ("\t.weak\t", (FILE)); \
++ assemble_name ((FILE), (NAME)); \
++ fputc ('\n', (FILE)); \
++ } \
++ while (0)
++
++/* The Overall Framework of an Assembler File. */
++
++#undef SET_ASM_OP
++#define SET_ASM_OP "\t.set\t"
++
++/* A C string constant describing how to begin a comment in the target
++ assembler language. The compiler assumes that the comment will end at the
++ end of the line. */
++#define ASM_COMMENT_START ";"
++
++/* A C string constant for text to be output before each `asm' statement or
++ group of consecutive ones. Normally this is `"#APP"', which is a comment
++ that has no effect on most assemblers but tells the GNU assembler that it
++ must check the lines that follow for all valid assembler constructs. */
++#define ASM_APP_ON "#APP\n"
++
++/* A C string constant for text to be output after each `asm' statement or
++ group of consecutive ones. Normally this is `"#NO_APP"', which tells the
++ GNU assembler to resume making the time-saving assumptions that are valid
++ for ordinary compiler output. */
++#define ASM_APP_OFF "#NO_APP\n"
++
++/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
++ explicit argument. If you define this macro, it is used in place of
++ `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
++ alignment of the variable. The alignment is specified as the number of
++ bits.
++
++ Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
++ defining this macro. */
++#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
++ asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
++
++/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
++ newly allocated string made from the string NAME and the number NUMBER, with
++ some suitable punctuation added. Use `alloca' to get space for the string.
++
++ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
++ an assembler label for an internal static variable whose name is NAME.
++ Therefore, the string must be such as to result in valid assembler code.
++ The argument NUMBER is different each time this macro is executed; it
++ prevents conflicts between similarly-named internal static variables in
++ different scopes.
++
++ Ideally this string should not be a valid C identifier, to prevent any
++ conflict with the user's own symbols. Most assemblers allow periods or
++ percent signs in assembler symbols; putting at least one of these between
++ the name and the number will suffice. */
++#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
++ ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
++ sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
++
++#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
++ sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM))
++/* A C statement to store into the string STRING a label whose name
++ is made from the string PREFIX and the number NUM.
++
++ This string, when output subsequently by `assemble_name', should
++ produce the output that `(*targetm.asm_out.internal_label)' would produce
++ with the same PREFIX and NUM.
++
++ If the string begins with `*', then `assemble_name' will output
++ the rest of the string unchanged. It is often convenient for
++ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the
++ string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
++ output the string, and may change it. (Of course,
++ `ASM_OUTPUT_LABELREF' is also part of your machine description, so
++ you should know what it does on your machine.) */
++
++/* This says how to output assembler code to declare an
++ uninitialized external linkage data object. Under SVR4,
++ the linker seems to want the alignment of data objects
++ to depend on their types. We do exactly that here. */
++
++#define COMMON_ASM_OP "\t.comm\t"
++
++#undef ASM_OUTPUT_COMMON
++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
++ do \
++ { \
++ fprintf ((FILE), "%s", COMMON_ASM_OP); \
++ assemble_name ((FILE), (NAME)); \
++ fprintf ((FILE), ", %u\n", (SIZE)); \
++ } \
++ while (0)
++
++/* This says how to output assembler code to declare an
++ uninitialized internal linkage data object. Under SVR4,
++ the linker seems to want the alignment of data objects
++ to depend on their types. We do exactly that here. */
++#define LOCAL_ASM_OP "\t.lcomm\t"
++
++#undef ASM_OUTPUT_LOCAL
++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
++ do \
++ { \
++ fprintf ((FILE), "%s", LOCAL_ASM_OP); \
++ assemble_name ((FILE), (NAME)); \
++ fprintf ((FILE), ", %u\n", (SIZE)); \
++ } \
++ while (0)
++
++/* Globalizing directive for a label. */
++#define GLOBAL_ASM_OP ".global\t"
++
++/* Output the operand of an instruction. */
++#define PRINT_OPERAND(FILE, X, CODE) \
++ ubicom32_print_operand(FILE, X, CODE)
++
++/* Output the address of an operand. */
++#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
++ ubicom32_print_operand_address (FILE, ADDR)
++
++/* A C expression to output to STREAM some assembler code which will push hard
++ register number REGNO onto the stack. The code need not be optimal, since
++ this macro is used only when profiling. */
++#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)
++
++/* A C expression to output to STREAM some assembler code which will pop hard
++ register number REGNO off of the stack. The code need not be optimal, since
++ this macro is used only when profiling. */
++#define ASM_OUTPUT_REG_POP(FILE, REGNO)
++
++/* This macro should be provided on machines where the addresses in a dispatch
++ table are relative to the table's own address.
++
++ The definition should be a C statement to output to the stdio stream STREAM
++ an assembler pseudo-instruction to generate a difference between two labels.
++ VALUE and REL are the numbers of two internal labels. The definitions of
++ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
++ printed in the same way here. For example,
++
++ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
++#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
++ fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
++
++/* This macro should be provided on machines where the addresses in a dispatch
++ table are absolute.
++
++ The definition should be a C statement to output to the stdio stream STREAM
++ an assembler pseudo-instruction to generate a reference to a label. VALUE
++ is the number of an internal label whose definition is output using
++ `ASM_OUTPUT_INTERNAL_LABEL'. For example,
++
++ fprintf (STREAM, "\t.word L%d\n", VALUE) */
++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
++ fprintf (STREAM, "\t.word .L%d\n", VALUE)
++
++/* Switch into a generic section. */
++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
++
++/* Assembler Commands for Alignment. */
++
++#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N)
++/* A C statement to output to the stdio stream STREAM an assembler
++ instruction to advance the location counter by NBYTES bytes.
++ Those bytes should be zero when loaded. NBYTES will be a C
++ expression of type `int'. */
++
++/* A C statement to output to the stdio stream STREAM an assembler command to
++ advance the location counter to a multiple of 2 to the POWER bytes. POWER
++ will be a C expression of type `int'. */
++#define ASM_OUTPUT_ALIGN(FILE, LOG) \
++ if ((LOG) != 0) \
++ fprintf (FILE, "\t.align %d\n", (LOG))
++
++/* A C expression that returns the DBX register number for the compiler
++ register number REGNO. In simple cases, the value of this expression may be
++ REGNO itself. But sometimes there are some registers that the compiler
++ knows about and DBX does not, or vice versa. In such cases, some register
++ may need to have one number in the compiler and another for DBX.
++
++ If two registers have consecutive numbers inside GNU CC, and they can be
++ used as a pair to hold a multiword value, then they *must* have consecutive
++ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
++ will be unable to access such a pair, because they expect register pairs to
++ be consecutive in their own numbering scheme.
++
++ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
++ preserve register pairs, then what you must do instead is redefine the
++ actual register numbering scheme.
++
++ This declaration is required. */
++#define DBX_REGISTER_NUMBER(REGNO) REGNO
++
++/* A C expression that returns the integer offset value for an automatic
++ variable having address X (an RTL expression). The default computation
++ assumes that X is based on the frame-pointer and gives the offset from the
++ frame-pointer. This is required for targets that produce debugging output
++ for DBX or COFF-style debugging output for SDB and allow the frame-pointer
++ to be eliminated when the `-g' options is used. */
++#define DEBUGGER_AUTO_OFFSET(X) \
++ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
++ + (frame_pointer_needed \
++ ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \
++ STACK_POINTER_REGNUM)))
++
++/* A C expression that returns the integer offset value for an argument having
++ address X (an RTL expression). The nominal offset is OFFSET. */
++#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
++ ((GET_CODE (X) == PLUS ? OFFSET : 0) \
++ + (frame_pointer_needed \
++ ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \
++ STACK_POINTER_REGNUM)))
++
++/* A C expression that returns the type of debugging output GNU CC produces
++ when the user specifies `-g' or `-ggdb'. Define this if you have arranged
++ for GNU CC to support more than one format of debugging output. Currently,
++ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
++ `DWARF2_DEBUG', and `XCOFF_DEBUG'.
++
++ The value of this macro only affects the default debugging output; the user
++ can always get a specific type of output by using `-gstabs', `-gcoff',
++ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
++
++ Defined in svr4.h.
++*/
++#undef PREFERRED_DEBUGGING_TYPE
++#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
++
++/* Define this macro if GNU CC should produce dwarf version 2 format debugging
++ output in response to the `-g' option.
++
++ To support optional call frame debugging information, you must also define
++ `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
++ prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
++ and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you
++ don't.
++
++ Defined in svr4.h. */
++
++#define DWARF2_DEBUGGING_INFO 1
++/*#define DWARF2_UNWIND_INFO 1*/
++#define DWARF2_UNWIND_INFO 0
++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO)
++#define INCOMING_FRAME_SP_OFFSET 0
++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO)
++#define EH_RETURN_FIRST 9
++#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM)
++
++/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
++ location used to store the amount to ajdust the stack. This is
++ usually a registers that is available from end of the function's body
++ to the end of the epilogue. Thus, this cannot be a register used as a
++ temporary by the epilogue.
++
++ This must be an integer register. */
++#define EH_RETURN_STACKADJ_REGNO 11
++#define EH_RETURN_STACKADJ_RTX \
++ gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
++
++/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
++ location used to store the address the processor should jump to
++ catch exception. This is usually a registers that is available from
++ end of the function's body to the end of the epilogue. Thus, this
++ cannot be a register used as a temporary by the epilogue.
++
++ This must be an address register. */
++#define EH_RETURN_HANDLER_REGNO 18
++#define EH_RETURN_HANDLER_RTX \
++ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
++
++/* #define DWARF2_DEBUGGING_INFO */
++
++/* Define this macro if GNU CC should produce dwarf version 2-style
++ line numbers. This usually requires extending the assembler to
++ support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the
++ assembler configuration header files. */
++/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */
++
++
++/* An alias for a machine mode name. This is the machine mode that elements
++ of a jump-table have. */
++#define CASE_VECTOR_MODE Pmode
++
++/* Smallest number of different values for which it is best to use a
++ jump-table instead of a tree of conditional branches. For most Ubicom32
++ targets this is quite small, but for the v1 architecture implementations
++ we had very little data memory and so heavily prefer the tree approach
++ rather than the jump tables. */
++#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold
++
++/* Register operations within the Ubicom32 architecture always operate on
++ the whole register word and not just the sub-bits required for the opcode
++ mode size. */
++#define WORD_REGISTER_OPERATIONS
++
++/* The maximum number of bytes that a single instruction can move quickly from
++ memory to memory. */
++#define MOVE_MAX 4
++
++/* A C expression that is nonzero if on this machine the number of bits
++ actually used for the count of a shift operation is equal to the number of
++ bits needed to represent the size of the object being shifted. When this
++ macro is non-zero, the compiler will assume that it is safe to omit a
++ sign-extend, zero-extend, and certain bitwise `and' instructions that
++ truncates the count of a shift operation. On machines that have
++ instructions that act on bitfields at variable positions, which may include
++ `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
++ deletion of truncations of the values that serve as arguments to bitfield
++ instructions.
++
++ If both types of instructions truncate the count (for shifts) and position
++ (for bitfield operations), or if no variable-position bitfield instructions
++ exist, you should define this macro.
++
++ However, on some machines, such as the 80386 and the 680x0, truncation only
++ applies to shift operations and not the (real or pretended) bitfield
++ operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
++ Instead, add patterns to the `md' file that include the implied truncation
++ of the shift instructions.
++
++ You need not define this macro if it would always have the value of zero. */
++#define SHIFT_COUNT_TRUNCATED 1
++
++/* A C expression which is nonzero if on this machine it is safe to "convert"
++ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
++ than INPREC) by merely operating on it as if it had only OUTPREC bits.
++
++ On many machines, this expression can be 1.
++
++ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
++ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
++ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
++ things. */
++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
++
++/* A C string constant that tells the GNU CC driver program options to pass
++ to the assembler. It can also specify how to translate options you give
++ to GNU CC into options for GNU CC to pass to the assembler. See the
++ file `sun3.h' for an example of this.
++
++ Defined in svr4.h. */
++#undef ASM_SPEC
++#define ASM_SPEC \
++ "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}"
++
++#define LINK_SPEC "\
++%{h*} %{v:-V} \
++%{b} \
++%{mfdpic:-melf32ubicom32fdpic -z text} \
++%{static:-dn -Bstatic} \
++%{shared:-G -Bdynamic} \
++%{symbolic:-Bsymbolic} \
++%{G*} \
++%{YP,*} \
++%{Qy:} %{!Qn:-Qy}"
++
++#undef STARTFILE_SPEC
++#undef ENDFILE_SPEC
++
++/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
++
++#undef LIB_SPEC
++#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
++
++#undef HAVE_GAS_SHF_MERGE
++#define HAVE_GAS_SHF_MERGE 0
++
++#define HANDLE_SYSV_PRAGMA 1
++#undef HANDLE_PRAGMA_PACK
++
++typedef void (*ubicom32_func_ptr) (void);
++
++/* Define builtins for selected special-purpose instructions. */
++enum ubicom32_builtins
++{
++ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
++ UBICOM32_BUILTIN_UBICOM32_SWAPB_4
++};
++
++extern rtx ubicom32_compare_op0;
++extern rtx ubicom32_compare_op1;
++
++#define TYPE_ASM_OP "\t.type\t"
++#define TYPE_OPERAND_FMT "@%s"
++
++#ifndef ASM_DECLARE_RESULT
++#define ASM_DECLARE_RESULT(FILE, RESULT)
++#endif
++
++/* These macros generate the special .type and .size directives which
++ are used to set the corresponding fields of the linker symbol table
++ entries in an ELF object file under SVR4. These macros also output
++ the starting labels for the relevant functions/objects. */
++
++/* Write the extra assembler code needed to declare a function properly.
++ Some svr4 assemblers need to also have something extra said about the
++ function's return value. We allow for that here. */
++
++#ifndef ASM_DECLARE_FUNCTION_NAME
++#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
++ do \
++ { \
++ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
++ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
++ ASM_OUTPUT_LABEL (FILE, NAME); \
++ } \
++ while (0)
++#endif
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32.md
+@@ -0,0 +1,3753 @@
++; GCC machine description for Ubicom32
++;
++; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
++; Foundation, Inc.
++; Contributed by Ubicom, Inc.
++;
++; This file is part of GCC.
++;
++; GCC is free software; you can redistribute it and/or modify
++; it under the terms of the GNU General Public License as published by
++; the Free Software Foundation; either version 3, or (at your option)
++; any later version.
++;
++; GCC is distributed in the hope that it will be useful,
++; but WITHOUT ANY WARRANTY; without even the implied warranty of
++; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++; GNU General Public License for more details.
++;
++; You should have received a copy of the GNU General Public License
++; along with GCC; see the file COPYING3. If not see
++; <http://www.gnu.org/licenses/>.
++
++(define_constants
++ [(AUX_DATA_REGNO 15)
++ (LINK_REGNO 21)
++ (SP_REGNO 23)
++ (ACC0_HI_REGNO 24)
++ (ACC1_HI_REGNO 26)
++ (CC_REGNO 30)])
++
++(define_constants
++ [(UNSPEC_FDPIC_GOT 0)
++ (UNSPEC_FDPIC_GOT_FUNCDESC 1)])
++
++(define_constants
++ [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)])
++
++;; Types of instructions (for scheduling purposes).
++
++(define_attr "type" "mul,addr,other"
++ (const_string "other"))
++
++; Define instruction scheduling characteristics. We can only issue
++; one instruction per clock so we don't need to define CPU units.
++;
++(define_automaton "ubicom32")
++
++(define_cpu_unit "i_pipeline" "ubicom32");
++
++; We have a 4 cycle hazard associated with address calculations which
++; seems rather tricky to avoid so we go with a defensive assumption
++; that almost anything can be used to generate addresses.
++;
++;(define_insn_reservation "ubicom32_other" 4
++; (eq_attr "type" "other")
++; "i_pipeline")
++
++; Some moves don't generate hazards.
++;
++;(define_insn_reservation "ubicom32_addr" 1
++; (eq_attr "type" "addr")
++; "i_pipeline")
++
++; We need 3 cycles between a multiply instruction and any use of the
++; matching accumulator register(s).
++;
++(define_insn_reservation "ubicom32_mul" 4
++ (eq_attr "type" "mul")
++ "i_pipeline")
++
++(define_attr "length" ""
++ (const_int 4))
++
++(include "predicates.md")
++(include "constraints.md")
++
++; 8-bit move with no change to the flags reg.
++;
++(define_insn "movqi"
++ [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
++ (match_operand:QI 1 "ubicom32_move_operand" "g"))]
++ ""
++ "move.1\\t%0, %1")
++
++; Combiner-generated 8-bit move with the zero flag set accordingly.
++;
++(define_insn "movqi_ccszn"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))
++ (set (match_operand:QI 1 "nonimmediate_operand" "=rm")
++ (match_dup 0))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "ext.1\\t%1, %0")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:QI 0 "nonimmediate_operand" "")
++ (match_operand:QI 1 "nonimmediate_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 0)
++ (const_int 0)]))]
++ "(GET_MODE (operands[2]) == CCSZNmode
++ || GET_MODE (operands[2]) == CCSZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:QI 0 "nonimmediate_operand" "")
++ (match_operand:QI 1 "nonimmediate_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 1)
++ (const_int 0)]))]
++ "(GET_MODE (operands[2]) == CCSZNmode
++ || GET_MODE (operands[2]) == CCSZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; 16-bit move with no change to the flags reg.
++;
++(define_insn "movhi"
++ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
++ (match_operand:HI 1 "ubicom32_move_operand" "g"))]
++ ""
++ "*
++ {
++ if (CONST_INT_P (operands[1]))
++ return \"movei\\t%0, %1\";
++
++ return \"move.2\\t%0, %1\";
++ }")
++
++; Combiner-generated 16-bit move with the zero flag set accordingly.
++;
++(define_insn "movhi_ccszn"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))
++ (set (match_operand:HI 1 "nonimmediate_operand" "=rm")
++ (match_dup 0))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "ext.2\\t%1, %0")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:HI 0 "nonimmediate_operand" "")
++ (match_operand:HI 1 "nonimmediate_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 0)
++ (const_int 0)]))]
++ "(GET_MODE (operands[2]) == CCSZNmode
++ || GET_MODE (operands[2]) == CCSZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:HI 0 "nonimmediate_operand" "")
++ (match_operand:HI 1 "nonimmediate_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 1)
++ (const_int 0)]))]
++ "(GET_MODE (operands[2]) == CCSZNmode
++ || GET_MODE (operands[2]) == CCSZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; 32-bit move with no change to the flags reg.
++;
++(define_expand "movsi"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "general_operand" ""))]
++ ""
++ "{
++ /* Convert any complexities in operand 1 into something that can just
++ fall into the default expander code. */
++ ubicom32_expand_movsi (operands);
++ }")
++
++(define_insn "movsi_high"
++ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
++ (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))]
++ ""
++ "moveai\\t%0, #%%hi(%E1)")
++
++(define_insn "movsi_lo_sum"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a")
++ (match_operand:SI 2 "immediate_operand" "s")))]
++ ""
++ "lea.1\\t%0, %%lo(%E2)(%1)")
++
++(define_insn "movsi_internal"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))]
++ ""
++ "*
++ {
++ if (CONST_INT_P (operands[1]))
++ {
++ ubicom32_emit_move_const_int (operands[0], operands[1]);
++ return \"\";
++ }
++
++ if (GET_CODE (operands[1]) == CONST_DOUBLE)
++ {
++ HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]);
++
++ ubicom32_emit_move_const_int (operands[0], GEN_INT (i));
++ return \"\";
++ }
++
++ if (ubicom32_address_register_operand (operands[0], VOIDmode)
++ && register_operand (operands[1], VOIDmode))
++ {
++ if (ubicom32_address_register_operand (operands[1], VOIDmode))
++ return \"lea.1\\t%0, 0(%1)\";
++
++ /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */
++ if (ubicom32_v4)
++ return \"movea\\t%0, %1\";
++
++ return \"move.4\\t%0, %1\";
++ }
++
++ return \"move.4\\t%0, %1\";
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; constants of value 2^n by using a bset.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(exact_log2 (INTVAL (operands[1])) > 14
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 0)
++ (ior:SI (const_int 0)
++ (match_dup 1)))
++ (clobber (reg:CC CC_REGNO))])]
++ "")
++
++; If we're not dependent on the state of the condition codes we can construct
++; constants of value ~(2^n) by using a bclr.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(exact_log2 (~INTVAL (operands[1])) > 14
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 0)
++ (and:SI (const_int -1)
++ (match_dup 1)))
++ (clobber (reg:CC CC_REGNO))])]
++ "")
++
++; For 32-bit constants that have bits 0 through 24 and bit 31 set the same
++; we can use swapb.4!
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(ubicom32_v4
++ && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff
++ && (INTVAL (operands[1]) & 0xffffffff) != 0
++ && ((INTVAL (operands[1]) & 0x80ffffff) == 0
++ || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))"
++ [(set (match_dup 0)
++ (bswap:SI (match_dup 2)))]
++ "{
++ operands[2] = GEN_INT (INTVAL (operands[1]) >> 24);
++ }")
++
++; If this is a write of a constant to memory look to see if we can usefully
++; transform this into 2 smaller writes.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "memory_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "! satisfies_constraint_I (operands[1])
++ && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)"
++ [(set (match_dup 4) (match_dup 2))
++ (set (match_dup 5) (match_dup 3))]
++ "{
++ rtx low_hword_addr;
++
++ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
++ operands[3] = gen_lowpart (HImode, operands[1]);
++
++ operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0));
++ MEM_COPY_ATTRIBUTES (operands[4], operands[0]);
++
++ low_hword_addr = plus_constant (XEXP (operands[0], 0), 2);
++ operands[5] = gen_rtx_MEM (HImode, low_hword_addr);
++ MEM_COPY_ATTRIBUTES (operands[5], operands[0]);
++ }")
++
++; If we're writing memory and we've not found a better way to do this then
++; try loading into a D register and then copying to memory. This will
++; perform the fewest possible memory read/writes.
++;
++(define_peephole2
++ [(match_scratch:SI 2 "d")
++ (set (match_operand:SI 0 "memory_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "! satisfies_constraint_I (operands[1])"
++ [(set (match_dup 2) (match_dup 1))
++ (set (match_dup 0) (match_dup 2))]
++ "")
++
++; If we're not dependent on the state of the condition codes we can construct
++; constants of value (2^n - 1) by using an lsr.4.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 0)
++ (lshiftrt:SI (const_int -1)
++ (match_dup 2)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; constants of value (2^n - 1) by using an lsr.4.
++;
++(define_peephole2
++ [(match_scratch:SI 2 "d")
++ (set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 2)
++ (lshiftrt:SI (const_int -1)
++ (match_dup 3)))
++ (clobber (reg:CC CC_REGNO))])
++ (set (match_dup 0)
++ (match_dup 2))]
++ "{
++ operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; some other constants by using an lsl.4 to shift 7 bits left by some
++; constant.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 0)
++ (ashift:SI (match_dup 2)
++ (match_dup 3)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
++ operands[2] = GEN_INT (INTVAL (operands[1]) >> shift);
++ operands[3] = GEN_INT (shift);
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; some other constants by using an lsl.4 to shift 7 bits left by some
++; constant.
++;
++(define_peephole2
++ [(match_scratch:SI 2 "d")
++ (set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(parallel
++ [(set (match_dup 2)
++ (ashift:SI (match_dup 3)
++ (match_dup 4)))
++ (clobber (reg:CC CC_REGNO))])
++ (set (match_dup 0)
++ (match_dup 2))]
++ "{
++ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
++ operands[3] = GEN_INT (INTVAL (operands[1]) >> shift);
++ operands[4] = GEN_INT (shift);
++ }")
++
++; For some 16-bit unsigned constants that have bit 15 set we can use
++; swapb.2!
++;
++; Note that the movsi code emits the same sequence but by using a peephole2
++; we split the pattern early enough to allow instruction scheduling to
++; occur.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(ubicom32_v4
++ && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)"
++ [(set (match_dup 0)
++ (zero_extend:SI (bswap:HI (match_dup 2))))]
++ "{
++ HOST_WIDE_INT i = INTVAL (operands[1]) >> 8;
++ if (i >= 0x80)
++ i -= 0x100;
++ operands[2] = GEN_INT (i);
++ }")
++
++; In general for a 16-bit unsigned constant that has bit 15 set
++; then we need a movei/move.2 pair unless we can represent it
++; via just a move.2.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(INTVAL (operands[1]) & 0xffff8000) == 0x8000
++ && (INTVAL (operands[1]) & 0xffff) < 0xff80"
++ [(set (match_dup 2)
++ (match_dup 1))
++ (set (match_dup 0)
++ (zero_extend:SI (match_dup 2)))]
++ "{
++ operands[2] = gen_rtx_REG (HImode, REGNO (operands[0]));
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; 32-bit constants that have bits 16 through 31 set to arbitrary values
++; and have bits 0 through 15 set to something representable as a default
++; source-1 immediate - we use movei/shmrg.2
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(((INTVAL (operands[1]) >= 0x8000
++ && INTVAL (operands[1]) < 0xff80)
++ || INTVAL (operands[1]) >= 0x10000
++ || INTVAL (operands[1]) < -0x8000)
++ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
++ || (INTVAL (operands[1]) & 0xffff) < 0x80)
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(set (match_dup 0)
++ (match_dup 2))
++ (parallel
++ [(set (match_dup 0)
++ (ior:SI
++ (ashift:SI (match_dup 0)
++ (const_int 16))
++ (zero_extend:SI
++ (match_dup 3))))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
++ operands[3] = gen_lowpart (HImode, operands[1]);
++ }")
++
++; Exactly the same as the peephole2 preceding except that this targets a
++; general register instead of D register. Hopefully the later optimization
++; passes will notice that the value ended up in a D register first here
++; and eliminate away the other register!
++;
++(define_peephole2
++ [(match_scratch:SI 2 "d")
++ (set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(((INTVAL (operands[1]) >= 0x8000
++ && INTVAL (operands[1]) < 0xff80)
++ || INTVAL (operands[1]) >= 0x10000
++ || INTVAL (operands[1]) < -0x8000)
++ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
++ || (INTVAL (operands[1]) & 0xffff) < 0x80)
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(set (match_dup 2)
++ (match_dup 3))
++ (parallel
++ [(set (match_dup 2)
++ (ior:SI
++ (ashift:SI (match_dup 2)
++ (const_int 16))
++ (zero_extend:SI
++ (match_dup 4))))
++ (clobber (reg:CC CC_REGNO))])
++ (set (match_dup 0)
++ (match_dup 2))]
++ "{
++ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
++ operands[4] = gen_lowpart (HImode, operands[1]);
++ }")
++
++; If we have a load of a large integer constant which does not have bit 31
++; set and we have a spare A reg then construct it with a moveai/lea.1 pair
++; instead. This avoids constructing it in 3 instructions on the stack.
++;
++; Note that we have to be careful not to match anything that matches
++; something we can do in a single instruction! There aren't many such
++; constants but there are some.
++;
++(define_peephole2
++ [(match_scratch:SI 2 "a")
++ (set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))]
++ "(! (INTVAL (operands[1]) & 0x80000000)
++ && ((INTVAL (operands[1]) >= 0x8000
++ && INTVAL (operands[1]) < 0xff80)
++ || INTVAL (operands[1]) >= 0x10000))"
++ [(set (match_dup 2)
++ (match_dup 3))
++ (set (match_dup 0)
++ (plus:SI (match_dup 2)
++ (match_dup 4)))]
++ "{
++ HOST_WIDE_INT i = INTVAL (operands[1]);
++ operands[3] = GEN_INT (i & 0xffffff80);
++ operands[4] = GEN_INT (i & 0x7f);
++ }")
++
++; If we're not dependent on the state of the condition codes we can construct
++; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible.
++;
++(define_peephole2
++ [(match_scratch:HI 2 "d")
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))
++ (match_dup 2)]
++ "(INTVAL (operands[1]) & 0x80000000
++ && INTVAL (operands[1]) < -0x8000
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(set (match_dup 0)
++ (match_dup 3))
++ (set (match_dup 2)
++ (match_dup 4))
++ (parallel
++ [(set (match_dup 0)
++ (ior:SI
++ (ashift:SI (match_dup 0)
++ (const_int 16))
++ (zero_extend:SI
++ (match_dup 2))))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
++ operands[4] = gen_lowpart (HImode, operands[1]);
++ }")
++
++; Exactly the same as the peephole2 preceding except that this targets a
++; general register instead of D register. Hopefully the later optimization
++; passes will notice that the value ended up in a D register first here
++; and eliminate away the other register!
++;
++(define_peephole2
++ [(match_scratch:SI 2 "d")
++ (match_scratch:HI 3 "d")
++ (set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))
++ (match_dup 3)]
++ "(INTVAL (operands[1]) & 0x80000000
++ && INTVAL (operands[1]) < -0x8000
++ && peep2_regno_dead_p (0, CC_REGNO))"
++ [(set (match_dup 2)
++ (match_dup 4))
++ (set (match_dup 3)
++ (match_dup 5))
++ (parallel
++ [(set (match_dup 2)
++ (ior:SI
++ (ashift:SI (match_dup 2)
++ (const_int 16))
++ (zero_extend:SI
++ (match_dup 3))))
++ (clobber (reg:CC CC_REGNO))])
++ (set (match_dup 0)
++ (match_dup 2))]
++ "{
++ operands[4] = gen_highpart_mode (HImode, SImode, operands[1]);
++ operands[5] = gen_lowpart (HImode, operands[1]);
++ }")
++
++(define_insn "movsi_fdpic_got_offset"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))]
++ ""
++ "movei\\t%0, %1")
++
++; The explicit MEM inside the UNSPEC prevents the compiler from moving
++; the load before a branch after a NULL test, or before a store that
++; initializes a function descriptor.
++
++(define_insn_and_split "load_fdpic_funcdesc"
++ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
++ (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))]
++ UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 0)
++ (mem:SI (match_dup 1)))])
++
++; Combiner-generated 32-bit move with the zero flag set accordingly.
++;
++(define_insn "movsi_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d")
++ (const_int 0)))
++ (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm")
++ (match_dup 0))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ lsl.4\\t%1, %0, #0
++ add.4\\t%1, #0, %0")
++
++; Combiner-generated 32-bit move with all flags set accordingly.
++;
++(define_insn "movsi_ccw"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (const_int 0)))
++ (set (match_operand:SI 1 "nonimmediate_operand" "=rm")
++ (match_dup 0))]
++ "ubicom32_match_cc_mode(insn, CCWmode)"
++ "add.4\\t%1, #0, %0")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (parallel
++ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 0)
++ (const_int 0)]))
++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
++ "(GET_MODE (operands[2]) == CCWZNmode
++ || GET_MODE (operands[2]) == CCWZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (match_operand:SI 1 "ubicom32_data_register_operand" ""))
++ (parallel
++ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 1)
++ (const_int 0)]))
++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
++ "(GET_MODE (operands[2]) == CCWZNmode
++ || GET_MODE (operands[2]) == CCWZmode)"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 0)
++ (match_dup 1))])]
++ "")
++
++; Combine isn't very good at merging some types of operations so we
++; have to make do with a peephole. It's not as effective but it's better
++; than doing nothing.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (parallel
++ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 0)
++ (const_int 0)]))
++ (set (match_operand:SI 4 "ubicom32_data_register_operand" "")
++ (match_dup 0))])]
++ "(peep2_reg_dead_p (2, operands[0])
++ && (GET_MODE (operands[2]) == CCWZNmode
++ || GET_MODE (operands[2]) == CCWZmode))"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (set (match_dup 4)
++ (match_dup 1))])]
++ "")
++
++; Register renaming may make a general reg into a D reg in which case
++; we may be able to simplify a compare.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (parallel
++ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (match_operator 3 "ubicom32_compare_operator"
++ [(match_dup 0)
++ (const_int 0)]))
++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
++ "(peep2_reg_dead_p (2, operands[0])
++ && (GET_MODE (operands[2]) == CCWZNmode
++ || GET_MODE (operands[2]) == CCWZmode))"
++ [(parallel
++ [(set (match_dup 2)
++ (match_op_dup 3
++ [(match_dup 1)
++ (const_int 0)]))
++ (clobber (match_dup 4))])]
++ "")
++
++(define_insn_and_split "movdi"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm")
++ (match_operand:DI 1 "general_operand" "rmi,ri"))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 2) (match_dup 3))
++ (set (match_dup 4) (match_dup 5))]
++ "{
++ rtx dest_low;
++ rtx src_low;
++
++ dest_low = gen_lowpart (SImode, operands[0]);
++ src_low = gen_lowpart (SImode, operands[1]);
++
++ if (REG_P (operands[0])
++ && REG_P (operands[1])
++ && REGNO (operands[0]) < REGNO (operands[1]))
++ {
++ operands[2] = gen_highpart (SImode, operands[0]);
++ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
++ operands[4] = dest_low;
++ operands[5] = src_low;
++ }
++ else if (reg_mentioned_p (dest_low, src_low))
++ {
++ operands[2] = gen_highpart (SImode, operands[0]);
++ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
++ operands[4] = dest_low;
++ operands[5] = src_low;
++ }
++ else
++ {
++ operands[2] = dest_low;
++ operands[3] = src_low;
++ operands[4] = gen_highpart (SImode, operands[0]);
++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
++ }
++ }"
++ [(set_attr "length" "8")])
++
++; Combiner-generated 64-bit move with all flags set accordingly.
++;
++(define_insn "movdi_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
++ (const_int 0)))
++ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
++ (match_dup 0))
++ (clobber (match_scratch:SI 2 "=X, d, d"))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_highpart (SImode, operands[0]);
++ operands[6] = gen_highpart (SImode, operands[1]);
++
++ if (ubicom32_data_register_operand (operands[0], VOIDmode))
++ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
++
++ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "movdi_ccw"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
++ (const_int 0)))
++ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
++ (match_dup 0))
++ (clobber (match_scratch:SI 2 "=X, d, d"))]
++ "ubicom32_match_cc_mode(insn, CCWmode)"
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_highpart (SImode, operands[0]);
++ operands[6] = gen_highpart (SImode, operands[1]);
++
++ if (ubicom32_data_register_operand (operands[0], VOIDmode))
++ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
++
++ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "movsf"
++ [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm")
++ (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))]
++ ""
++ "*
++ {
++ if (GET_CODE (operands[1]) == CONST_DOUBLE)
++ {
++ HOST_WIDE_INT val;
++ REAL_VALUE_TYPE rv;
++
++ REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
++ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
++
++ ubicom32_emit_move_const_int (operands[0], GEN_INT (val));
++ return \"\";
++ }
++
++ return \"move.4\\t%0, %1\";
++ }")
++
++(define_insn "zero_extendqihi2"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "move.1\\t%0, %1")
++
++(define_insn "zero_extendqisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "move.1\\t%0, %1")
++
++(define_insn "zero_extendqisi2_ccwz_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (zero_extend:SI (match_dup 1)))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "shmrg.1\\t%0, %1, #0")
++
++(define_insn "zero_extendhisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "move.2\\t%0, %1")
++
++(define_insn "zero_extendhisi2_ccwz_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (zero_extend:SI (match_dup 1)))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "shmrg.2\\t%0, %1, #0")
++
++(define_insn_and_split "zero_extendqidi2"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 2)
++ (zero_extend:SI (match_dup 1)))
++ (set (match_dup 3)
++ (const_int 0))]
++ "{
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart (SImode, operands[0]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn_and_split "zero_extendhidi2"
++ [(set (match_operand:DI 0 "register_operand" "=r")
++ (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 2)
++ (zero_extend:SI (match_dup 1)))
++ (set (match_dup 3)
++ (const_int 0))]
++ "{
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart (SImode, operands[0]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn_and_split "zero_extendsidi2"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=rm")
++ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 2)
++ (match_dup 1))
++ (set (match_dup 3)
++ (const_int 0))]
++ "{
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart (SImode, operands[0]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "extendqihi2"
++ [(set (match_operand:HI 0 "register_operand" "=r")
++ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "ext.1\\t%0, %1")
++
++(define_insn "extendqisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "ext.1\\t%0, %1")
++
++(define_insn "extendhisi2"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "ext.2\\t%0, %1")
++
++(define_insn_and_split "extendsidi2"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=d")
++ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (match_dup 2)
++ (match_dup 1))
++ (parallel
++ [(set (match_dup 3)
++ (ashiftrt:SI (match_dup 2)
++ (const_int 31)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart (SImode, operands[0]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "bswaphi"
++ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
++ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
++ "(ubicom32_v4)"
++ "swapb.2\\t%0, %1");
++
++(define_insn "bswaphisi"
++ [(set (match_operand:SI 0 "register_operand" "=r")
++ (zero_extend:SI
++ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))]
++ "(ubicom32_v4)"
++ "swapb.2\\t%0, %1");
++
++(define_insn "bswapsi"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))]
++ "(ubicom32_v4)"
++ "swapb.4\\t%0, %1");
++
++(define_insn "tstqi_ext1"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "ext.1\\t#0, %0")
++
++(define_expand "cmpqi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:QI 0 "ubicom32_arith_operand" "")
++ (match_operand:QI 1 "ubicom32_data_register_operand" "")))]
++ "(ubicom32_v4)"
++ "{
++ ubicom32_compare_op0 = operands[0];
++ ubicom32_compare_op1 = operands[1];
++ DONE;
++ }")
++
++(define_insn "sub1_ccs"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
++ "(ubicom32_v4)"
++ "sub.1\\t#0, %0, %1")
++
++; If we're testing for equality we don't have to worry about reversing conditions.
++;
++(define_insn "sub1_ccsz_1"
++ [(set (reg:CCSZ CC_REGNO)
++ (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm")
++ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
++ "(ubicom32_v4)"
++ "sub.1\\t#0, %0, %1")
++
++(define_insn "sub1_ccsz_2"
++ [(set (reg:CCSZ CC_REGNO)
++ (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d")
++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))]
++ "(ubicom32_v4)"
++ "sub.1\\t#0, %1, %0")
++
++; When the combiner runs it doesn't have any insight into whether or not an argument
++; to a compare is spilled to the stack and therefore can't swap the comparison in
++; an attempt to use sub.1 more effectively. We peephole this case here.
++;
++(define_peephole2
++ [(set (match_operand:QI 0 "register_operand" "")
++ (match_operand:QI 1 "ubicom32_arith_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (compare (match_operand:QI 3 "ubicom32_data_register_operand" "")
++ (match_dup 0)))
++ (set (pc)
++ (if_then_else (match_operator 4 "comparison_operator"
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_operand 5 "" ""))
++ (pc)))]
++ "(peep2_reg_dead_p (2, operands[0])
++ && peep2_regno_dead_p (3, CC_REGNO))"
++ [(set (match_dup 2)
++ (compare (match_dup 1)
++ (match_dup 3)))
++ (set (pc)
++ (if_then_else (match_op_dup 6
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_dup 5))
++ (pc)))]
++ "{
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
++ GET_MODE (operands[4]),
++ cc_reg,
++ const0_rtx);
++ }")
++
++(define_insn "tsthi_ext2"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "ext.2\\t#0, %0")
++
++(define_expand "cmphi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:HI 0 "ubicom32_arith_operand" "")
++ (match_operand:HI 1 "ubicom32_compare_operand" "")))]
++ ""
++ "{
++ do
++ {
++ /* Is this a cmpi? */
++ if (CONST_INT_P (operands[1]))
++ break;
++
++ /* Must be a sub.2 - if necessary copy an operand into a reg. */
++ if (! ubicom32_data_register_operand (operands[1], HImode))
++ operands[1] = copy_to_mode_reg (HImode, operands[1]);
++ }
++ while (0);
++
++ ubicom32_compare_op0 = operands[0];
++ ubicom32_compare_op1 = operands[1];
++ DONE;
++ }")
++
++(define_insn "cmpi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
++ (match_operand 1 "const_int_operand" "N")))]
++ ""
++ "cmpi\\t%0, %1")
++
++(define_insn "sub2_ccs"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
++ ""
++ "sub.2\\t#0, %0, %1")
++
++; If we're testing for equality we don't have to worry about reversing conditions.
++;
++(define_insn "sub2_ccsz_1"
++ [(set (reg:CCSZ CC_REGNO)
++ (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm")
++ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
++ ""
++ "sub.2\\t#0, %0, %1")
++
++(define_insn "sub2_ccsz_2"
++ [(set (reg:CCSZ CC_REGNO)
++ (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d")
++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
++ ""
++ "sub.2\\t#0, %1, %0")
++
++; When the combiner runs it doesn't have any insight into whether or not an argument
++; to a compare is spilled to the stack and therefore can't swap the comparison in
++; an attempt to use sub.2 more effectively. We peephole this case here.
++;
++(define_peephole2
++ [(set (match_operand:HI 0 "register_operand" "")
++ (match_operand:HI 1 "ubicom32_arith_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (compare (match_operand:HI 3 "ubicom32_data_register_operand" "")
++ (match_dup 0)))
++ (set (pc)
++ (if_then_else (match_operator 4 "comparison_operator"
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_operand 5 "" ""))
++ (pc)))]
++ "(peep2_reg_dead_p (2, operands[0])
++ && peep2_regno_dead_p (3, CC_REGNO))"
++ [(set (match_dup 2)
++ (compare (match_dup 1)
++ (match_dup 3)))
++ (set (pc)
++ (if_then_else (match_op_dup 6
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_dup 5))
++ (pc)))]
++ "{
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
++ GET_MODE (operands[4]),
++ cc_reg,
++ const0_rtx);
++ }")
++
++(define_insn_and_split "tstsi_lsl4"
++ [(set (match_operand 0 "ubicom32_cc_register_operand" "=r")
++ (match_operator 1 "ubicom32_compare_operator"
++ [(match_operand:SI 2 "nonimmediate_operand" "rm")
++ (const_int 0)]))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "#"
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ [(parallel
++ [(set (match_dup 0)
++ (match_op_dup 1
++ [(match_dup 2)
++ (const_int 0)]))
++ (clobber (match_dup 3))])]
++ "{
++ operands[3] = gen_reg_rtx (SImode);
++ }")
++
++(define_insn "tstsi_lsl4_d"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))
++ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "lsl.4\\t%1, %0, #0")
++
++; Comparison for equality with -1.
++;
++(define_insn "cmpsi_not4_ccwz"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
++ (const_int -1)))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "not.4\\t#0, %0")
++
++(define_expand "cmpsi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "ubicom32_arith_operand" "")
++ (match_operand:SI 1 "ubicom32_compare_operand" "")))]
++ ""
++ "{
++ do
++ {
++ /* Is this a cmpi? We can't take a memory address as cmpi takes
++ 16-bit operands. */
++ if (register_operand (operands[0], SImode)
++ && CONST_INT_P (operands[1])
++ && satisfies_constraint_N (operands[1]))
++ break;
++
++ /* Must be a sub.4 - if necessary copy an operand into a reg. */
++ if (! ubicom32_data_register_operand (operands[1], SImode))
++ operands[1] = copy_to_mode_reg (SImode, operands[1]);
++ }
++ while (0);
++
++ ubicom32_compare_op0 = operands[0];
++ ubicom32_compare_op1 = operands[1];
++ DONE;
++ }")
++
++(define_insn "cmpsi_cmpi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "register_operand" "r")
++ (match_operand 1 "const_int_operand" "N")))]
++ "(satisfies_constraint_N (operands[1]))"
++ "cmpi\\t%0, %1")
++
++(define_insn "cmpsi_sub4"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
++ ""
++ "sub.4\\t#0, %0, %1")
++
++; If we're testing for equality we don't have to worry about reversing conditions.
++;
++(define_insn "cmpsi_sub4_ccwz_1"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "sub.4\\t#0, %0, %1")
++
++(define_insn "cmpsi_sub4_ccwz_2"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (match_operand:SI 1 "nonimmediate_operand" "rm")))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "sub.4\\t#0, %1, %0")
++
++; When the combiner runs it doesn't have any insight into whether or not an argument
++; to a compare is spilled to the stack and therefore can't swap the comparison in
++; an attempt to use sub.4 more effectively. We peephole this case here.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "ubicom32_arith_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (compare (match_operand:SI 3 "ubicom32_data_register_operand" "")
++ (match_dup 0)))
++ (set (pc)
++ (if_then_else (match_operator 4 "comparison_operator"
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_operand 5 "" ""))
++ (pc)))]
++ "(peep2_reg_dead_p (2, operands[0])
++ && peep2_regno_dead_p (3, CC_REGNO))"
++ [(set (match_dup 2)
++ (compare (match_dup 1)
++ (match_dup 3)))
++ (set (pc)
++ (if_then_else (match_op_dup 6
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_dup 5))
++ (pc)))]
++ "{
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
++ GET_MODE (operands[4]),
++ cc_reg,
++ const0_rtx);
++ }")
++
++(define_insn_and_split "tstdi_or4"
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))]
++ ""
++ "#"
++ ""
++ [(parallel
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ (match_dup 0)
++ (const_int 0)))
++ (clobber (match_dup 1))])]
++ "{
++ operands[1] = gen_reg_rtx (SImode);
++ }")
++
++(define_insn "tstdi_or4_d"
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
++ (const_int 0)))
++ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
++ ""
++ "*
++ {
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_highpart_mode (SImode, DImode, operands[0]);
++
++ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
++ return \"or.4\\t#0, %2, %3\";
++
++ return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_expand "cmpdi"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:DI 0 "ubicom32_arith_operand" "")
++ (match_operand:DI 1 "ubicom32_data_register_operand" "")))]
++ ""
++ "{
++ ubicom32_compare_op0 = operands[0];
++ ubicom32_compare_op1 = operands[1];
++ DONE;
++ }")
++
++(define_insn "cmpdi_sub4subc"
++ [(set (reg CC_REGNO)
++ (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:DI 1 "ubicom32_data_register_operand" "d")))]
++ ""
++ "*
++ {
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_lowpart (SImode, operands[1]);
++ operands[4] = gen_highpart_mode (SImode, DImode, operands[0]);
++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
++
++ return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\";
++ }"
++ [(set_attr "length" "8")])
++
++; When the combiner runs it doesn't have any insight into whether or not an argument
++; to a compare is spilled to the stack and therefore can't swap the comparison in
++; an attempt to use sub.4/subc more effectively. We peephole this case here.
++;
++(define_peephole2
++ [(set (match_operand:DI 0 "register_operand" "")
++ (match_operand:DI 1 "ubicom32_arith_operand" ""))
++ (set (match_operand 2 "ubicom32_cc_register_operand" "")
++ (compare (match_operand:DI 3 "ubicom32_data_register_operand" "")
++ (match_dup 0)))
++ (set (pc)
++ (if_then_else (match_operator 4 "comparison_operator"
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_operand 5 "" ""))
++ (pc)))]
++ "(peep2_reg_dead_p (2, operands[0])
++ && peep2_regno_dead_p (3, CC_REGNO))"
++ [(set (match_dup 2)
++ (compare (match_dup 1)
++ (match_dup 3)))
++ (set (pc)
++ (if_then_else (match_op_dup 6
++ [(match_dup 2)
++ (const_int 0)])
++ (label_ref (match_dup 5))
++ (pc)))]
++ "{
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
++ GET_MODE (operands[4]),
++ cc_reg,
++ const0_rtx);
++ }")
++
++(define_insn "btst"
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ
++ (zero_extract:SI
++ (match_operand:SI 0 "nonimmediate_operand" "rm")
++ (const_int 1)
++ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))]
++ ""
++ "btst\\t%0, %1")
++
++(define_insn "bfextu_ccwz_null"
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ
++ (zero_extract:SI
++ (match_operand:SI 0 "nonimmediate_operand" "rm")
++ (match_operand 1 "const_int_operand" "M")
++ (const_int 0))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ ""
++ "bfextu\\t%2, %0, %1")
++
++(define_expand "addqi3"
++ [(parallel
++ [(set (match_operand:QI 0 "memory_operand" "")
++ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "")
++ (match_operand:QI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], QImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++ }")
++
++(define_insn "addqi3_add1"
++ [(set (match_operand:QI 0 "memory_operand" "=m, m")
++ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "@
++ add.1\\t%0, %2, %1
++ add.1\\t%0, %1, %2")
++
++(define_insn "addqi3_add1_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm"))
++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "@
++ add.1\\t#0, %1, %0
++ add.1\\t#0, %0, %1")
++
++(define_expand "addhi3"
++ [(parallel
++ [(set (match_operand:HI 0 "memory_operand" "")
++ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "")
++ (match_operand:HI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ if (!memory_operand (operands[0], HImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++ }")
++
++(define_insn "addhi3_add2"
++ [(set (match_operand:HI 0 "memory_operand" "=m, m")
++ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ add.2\\t%0, %2, %1
++ add.2\\t%0, %1, %2")
++
++(define_insn "addhi3_add2_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm"))
++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "@
++ add.2\\t#0, %1, %0
++ add.2\\t#0, %0, %1")
++
++(define_expand "addsi3"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "")
++ (match_operand:SI 2 "ubicom32_move_operand" "")))]
++ ""
++ "{
++ ubicom32_expand_addsi3 (operands);
++ DONE;
++ }")
++
++; We start with an instruction pattern that can do all sorts of interesting
++; things but we split out any uses of lea or pdec instructions because
++; those instructions don't clobber the condition codes.
++;
++(define_insn_and_split "addsi3_1"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm")
++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm")
++ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ #
++ #
++ #
++ #
++ #
++ add.4\\t%0, %2, %1
++ add.4\\t%0, %1, %2"
++ "(reload_completed
++ && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))"
++ [(set (match_dup 0)
++ (plus:SI (match_dup 1)
++ (match_dup 2)))]
++ ""
++)
++
++(define_insn "addsi3_1_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (plus:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ add.4\\t%0, %2, %1
++ add.4\\t%0, %1, %2")
++
++(define_insn "addsi3_1_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm"))
++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ add.4\\t#0, %1, %0
++ add.4\\t#0, %0, %1")
++
++(define_insn_and_split "addsi3_2"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm")
++ (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a")
++ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))]
++ ""
++ "@
++ lea.4\\t%0, %E2(%1)
++ lea.2\\t%0, %E2(%1)
++ lea.1\\t%0, %E2(%1)
++ pdec\\t%0, %n2(%1)
++ lea.1\\t%0, (%1,%2)
++ #"
++ "(reload_completed
++ && ! satisfies_constraint_L (operands[2])
++ && ! satisfies_constraint_K (operands[2])
++ && ! satisfies_constraint_J (operands[2])
++ && ! satisfies_constraint_P (operands[2])
++ && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))"
++ [(set (reg:SI AUX_DATA_REGNO)
++ (match_dup 2))
++ (set (match_dup 0)
++ (plus:SI (match_dup 1)
++ (reg:SI AUX_DATA_REGNO)))]
++ ""
++)
++
++(define_insn "lea_2"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 2))
++ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
++ ""
++ "lea.2\\t%0, (%2,%1)")
++
++(define_insn "lea_4"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 4))
++ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
++ ""
++ "lea.4\\t%0, (%2,%1)")
++
++(define_expand "adddi3"
++ [(parallel
++ [(set (match_operand:DI 0 "nonimmediate_operand" "")
++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "")
++ (match_operand:DI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++ }")
++
++; We construct a 64-bit add from 32-bit operations. Note that we use the
++; & constraint to prevent overlapping registers being allocated. We do
++; allow identical registers though as that won't break anything.
++;
++(define_insn "adddi3_add4addc"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart (SImode, operands[1]);
++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
++
++ if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
++ return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\";
++
++ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "adddi3_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))
++ (const_int 0)))
++ (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
++ (plus:DI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++
++ if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
++ {
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[7] = gen_highpart (SImode, operands[1]);
++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
++ }
++ else
++ {
++ operands[4] = gen_lowpart (SImode, operands[2]);
++ operands[5] = gen_lowpart (SImode, operands[1]);
++ operands[7] = gen_highpart (SImode, operands[2]);
++ operands[8] = gen_highpart (SImode, operands[1]);
++ }
++
++ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "adddi3_ccwz_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm"))
++ (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "*
++ {
++ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
++ {
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_lowpart (SImode, operands[1]);
++ operands[4] = gen_highpart (SImode, operands[0]);
++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
++ }
++ else
++ {
++ operands[2] = gen_lowpart (SImode, operands[1]);
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_highpart (SImode, operands[1]);
++ operands[5] = gen_highpart (SImode, operands[0]);
++ }
++
++ return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_expand "subqi3"
++ [(parallel
++ [(set (match_operand:QI 0 "memory_operand" "")
++ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "")
++ (match_operand:QI 2 "ubicom32_data_register_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], QImode))
++ FAIL;
++ }")
++
++(define_insn "subqi3_sub1"
++ [(set (match_operand:QI 0 "memory_operand" "=m")
++ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:QI 2 "ubicom32_data_register_operand" "d")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "sub.1\\t%0, %1, %2")
++
++(define_expand "subhi3"
++ [(parallel
++ [(set (match_operand:HI 0 "memory_operand" "")
++ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "")
++ (match_operand:HI 2 "ubicom32_data_register_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], HImode))
++ FAIL;
++ }")
++
++(define_insn "subhi3_sub2"
++ [(set (match_operand:HI 0 "memory_operand" "=m")
++ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:HI 2 "ubicom32_data_register_operand" "d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "sub.2\\t%0, %1, %2")
++
++(define_insn "subsi3"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_data_register_operand" "d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "sub.4\\t%0, %1, %2")
++
++(define_insn "subsi3_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_data_register_operand" "d"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (minus:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "sub.4\\t%0, %1, %2")
++
++; We construct a 64-bit add from 32-bit operations. Note that we use the
++; & constraint to prevent overlapping registers being allocated. We do
++; allow identical registers though as that won't break anything.
++;
++(define_insn "subdi3"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m")
++ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI")
++ (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
++ operands[8] = gen_highpart (SImode, operands[2]);
++
++ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "subdi3_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI")
++ (match_operand:DI 2 "ubicom32_data_register_operand" "d, d"))
++ (const_int 0)))
++ (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m")
++ (minus:DI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "*
++ {
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
++ operands[8] = gen_highpart (SImode, operands[2]);
++
++ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
++ }"
++ [(set_attr "length" "8")])
++
++;(define_insn "negqi2"
++; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
++; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d")))
++; (clobber (reg:CC CC_REGNO))]
++; "(ubicom32_v4)"
++; "sub.1\\t%0, #0, %1")
++
++;(define_insn "neghi2"
++; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
++; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d")))
++; (clobber (reg:CC CC_REGNO))]
++; ""
++; "sub.2\\t%0, #0, %1")
++
++(define_insn "negsi2"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "sub.4\\t%0, #0, %1")
++
++(define_insn_and_split "negdi2"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
++ (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ "reload_completed"
++ [(parallel [(set (match_dup 0)
++ (minus:DI (const_int 0)
++ (match_dup 1)))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ [(set_attr "length" "8")])
++
++(define_insn "umulhisi3"
++ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
++ (mult:SI
++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
++ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
++ (clobber (reg:HI ACC0_HI_REGNO))
++ (clobber (reg:HI ACC1_HI_REGNO))]
++ ""
++ "@
++ mulu\\t%A0, %2, %1
++ mulu\\t%A0, %1, %2"
++ [(set_attr "type" "mul,mul")])
++
++(define_insn "mulhisi3"
++ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
++ (mult:SI
++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
++ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
++ (clobber (reg:HI ACC0_HI_REGNO))
++ (clobber (reg:HI ACC1_HI_REGNO))]
++ ""
++ "@
++ muls\\t%A0, %2, %1
++ muls\\t%A0, %1, %2"
++ [(set_attr "type" "mul,mul")])
++
++(define_expand "mulsi3"
++ [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "")
++ (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "")
++ (match_operand:SI 2 "ubicom32_arith_operand" "")))]
++ ""
++ "{
++ if (ubicom32_emit_mult_sequence (operands))
++ DONE;
++ }")
++
++(define_insn "umulsidi3"
++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
++ (mult:DI
++ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
++ (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
++ "(ubicom32_v4)"
++ "@
++ mulu.4\\t%A0, %2, %1
++ mulu.4\\t%A0, %1, %2"
++ [(set_attr "type" "mul,mul")])
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
++ (mult:DI
++ (zero_extend:DI (match_dup 0))
++ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
++ "(peep2_reg_dead_p (2, operands[0])
++ || REGNO (operands[0]) == REGNO (operands[2])
++ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
++ && ! rtx_equal_p (operands[0], operands[3])"
++ [(set (match_dup 2)
++ (mult:DI
++ (zero_extend:DI (match_dup 1))
++ (zero_extend:DI (match_dup 3))))]
++ "")
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
++ (mult:DI
++ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
++ (zero_extend:DI (match_dup 0))))]
++ "(peep2_reg_dead_p (2, operands[0])
++ || REGNO (operands[0]) == REGNO (operands[2])
++ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
++ && ! rtx_equal_p (operands[0], operands[3])"
++ [(set (match_dup 2)
++ (mult:DI
++ (zero_extend:DI (match_dup 1))
++ (zero_extend:DI (match_dup 3))))]
++ "")
++
++(define_insn "umulsidi3_const"
++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
++ (mult:DI
++ (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
++ (match_operand 2 "const_int_operand" "I")))]
++ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
++ "mulu.4\\t%A0, %2, %1"
++ [(set_attr "type" "mul")])
++
++(define_insn "mulsidi3"
++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
++ (mult:DI
++ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
++ (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
++ "(ubicom32_v4)"
++ "@
++ muls.4\\t%A0, %2, %1
++ muls.4\\t%A0, %1, %2"
++ [(set_attr "type" "mul,mul")])
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
++ (mult:DI
++ (sign_extend:DI (match_dup 0))
++ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
++ "(peep2_reg_dead_p (2, operands[0])
++ || REGNO (operands[0]) == REGNO (operands[2])
++ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
++ && ! rtx_equal_p (operands[0], operands[3])"
++ [(set (match_dup 2)
++ (mult:DI
++ (sign_extend:DI (match_dup 1))
++ (sign_extend:DI (match_dup 3))))]
++ "")
++
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "nonimmediate_operand" ""))
++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
++ (mult:DI
++ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
++ (sign_extend:DI (match_dup 0))))]
++ "(peep2_reg_dead_p (2, operands[0])
++ || REGNO (operands[0]) == REGNO (operands[2])
++ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
++ && ! rtx_equal_p (operands[0], operands[3])"
++ [(set (match_dup 2)
++ (mult:DI
++ (sign_extend:DI (match_dup 1))
++ (sign_extend:DI (match_dup 3))))]
++ "")
++
++(define_insn "mulsidi3_const"
++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
++ (mult:DI
++ (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
++ (match_operand 2 "const_int_operand" "I")))]
++ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
++ "muls.4\\t%A0, %2, %1"
++ [(set_attr "type" "mul")])
++
++(define_expand "andqi3"
++ [(parallel
++ [(set (match_operand:QI 0 "memory_operand" "")
++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "")
++ (match_operand:QI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], QImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++ }")
++
++(define_insn "andqi3_and1"
++ [(set (match_operand:QI 0 "memory_operand" "=m, m")
++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "@
++ and.1\\t%0, %2, %1
++ and.1\\t%0, %1, %2")
++
++(define_insn "andqi3_and1_ccszn"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:QI 0 "memory_operand" "=m, m")
++ (and:QI (match_dup 1)
++ (match_dup 2)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "@
++ and.1\\t%0, %2, %1
++ and.1\\t%0, %1, %2")
++
++(define_insn "andqi3_and1_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "@
++ and.1\\t#0, %1, %0
++ and.1\\t#0, %0, %1")
++
++(define_insn "and1_ccszn_null_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "and.1\\t#0, %1, %0")
++
++(define_insn "and1_ccszn_null_2"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (subreg:SI
++ (match_operand:QI 1 "memory_operand" "m")
++ 0))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "and.1\\t#0, %1, %0")
++
++(define_insn "and1_ccszn_null_3"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (and:SI (subreg:SI
++ (match_operand:QI 0 "memory_operand" "m")
++ 0)
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "and.1\\t#0, %0, %1")
++
++(define_expand "andhi3"
++ [(parallel
++ [(set (match_operand:HI 0 "memory_operand" "")
++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "")
++ (match_operand:HI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ if (!memory_operand (operands[0], HImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++ }")
++
++(define_insn "andhi3_and2"
++ [(set (match_operand:HI 0 "memory_operand" "=m, m")
++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ and.2\\t%0, %2, %1
++ and.2\\t%0, %1, %2")
++
++(define_insn "andhi3_and2_ccszn"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:HI 0 "memory_operand" "=m, m")
++ (and:HI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "@
++ and.2\\t%0, %2, %1
++ and.2\\t%0, %1, %2")
++
++(define_insn "andhi3_and2_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "@
++ and.2\\t#0, %1, %0
++ and.2\\t#0, %0, %1")
++
++(define_insn "and2_ccszn_null_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "and.2\\t#0, %1, %0")
++
++(define_insn "and2_ccszn_null_2"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (subreg:SI
++ (match_operand:HI 1 "memory_operand" "m")
++ 0))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "and.2\\t#0, %1, %0")
++
++(define_insn "and2_ccszn_null_3"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (and:SI (subreg:SI
++ (match_operand:HI 0 "memory_operand" "m")
++ 0)
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "and.2\\t#0, %0, %1")
++
++(define_expand "andsi3"
++ [(parallel
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "")
++ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ do
++ {
++ /* Is this a bfextu? */
++ if (ubicom32_data_register_operand (operands[0], SImode)
++ && CONST_INT_P (operands[2])
++ && exact_log2 (INTVAL (operands[2]) + 1) != -1)
++ break;
++
++ /* Is this a bclr? */
++ if (CONST_INT_P (operands[2])
++ && exact_log2 (~INTVAL (operands[2])) != -1)
++ break;
++
++ /* Must be an and.4 */
++ if (!ubicom32_data_register_operand (operands[1], SImode))
++ operands[1] = copy_to_mode_reg (SImode, operands[1]);
++
++ if (!ubicom32_arith_operand (operands[2], SImode))
++ operands[2] = copy_to_mode_reg (SImode, operands[2]);
++ }
++ while (0);
++ }")
++
++(define_insn "andsi3_bfextu"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
++ (match_operand:SI 2 "const_int_operand" "O")))
++ (clobber (reg:CC CC_REGNO))]
++ "(satisfies_constraint_O (operands[2]))"
++ "*
++ {
++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
++
++ return \"bfextu\\t%0, %1, %3\";
++ }")
++
++(define_insn "andsi3_bfextu_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
++ (match_operand:SI 2 "const_int_operand" "O"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (and:SI (match_dup 1)
++ (match_dup 2)))]
++ "(satisfies_constraint_O (operands[2])
++ && ubicom32_match_cc_mode(insn, CCWZmode))"
++ "*
++ {
++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
++
++ return \"bfextu\\t%0, %1, %3\";
++ }")
++
++(define_insn "andsi3_bfextu_ccwz_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
++ (match_operand:SI 1 "const_int_operand" "O"))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ "(satisfies_constraint_O (operands[1])
++ && ubicom32_match_cc_mode(insn, CCWZmode))"
++ "*
++ {
++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1));
++
++ return \"bfextu\\t%2, %0, %3\";
++ }")
++
++(define_insn "andsi3_bclr"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
++ (match_operand:SI 2 "const_int_operand" "n")))
++ (clobber (reg:CC CC_REGNO))]
++ "(exact_log2 (~INTVAL (operands[2])) != -1)"
++ "bclr\\t%0, %1, #%D2")
++
++(define_insn "andsi3_and4"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ and.4\\t%0, %2, %1
++ and.4\\t%0, %1, %2")
++
++(define_insn "andsi3_and4_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (and:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ and.4\\t%0, %2, %1
++ and.4\\t%0, %1, %2")
++
++(define_insn "andsi3_and4_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ and.4\\t#0, %1, %0
++ and.4\\t#0, %0, %1")
++
++(define_insn "andsi3_lsr4_ccwz_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
++ (match_operand:SI 1 "const_int_operand" "n"))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1
++ && ubicom32_match_cc_mode(insn, CCWZmode))"
++ "*
++ {
++ operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1));
++
++ return \"lsr.4\\t%2, %0, %3\";
++ }")
++
++; We really would like the combiner to recognize this scenario and deal with
++; it but unfortunately it tries to canonicalize zero_extract ops on MEMs
++; into QImode operations and we can't match them in any useful way.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (match_operand:SI 1 "const_int_operand" ""))
++ (set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ
++ (and:SI (match_operand:SI 2 "nonimmediate_operand" "")
++ (match_dup 0))
++ (const_int 0)))]
++ "(exact_log2 (INTVAL (operands[1])) != -1
++ && peep2_reg_dead_p (2, operands[0]))"
++ [(set (reg:CCWZ CC_REGNO)
++ (compare:CCWZ
++ (zero_extract:SI
++ (match_dup 2)
++ (const_int 1)
++ (match_dup 3))
++ (const_int 0)))]
++ "{
++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1])));
++ }")
++
++(define_expand "anddi3"
++ [(parallel
++ [(set (match_operand:DI 0 "nonimmediate_operand" "")
++ (and:DI (match_operand:DI 1 "nonimmediate_operand" "")
++ (match_operand:DI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++ }")
++
++(define_insn_and_split "anddi3_and4"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
++ (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ "reload_completed"
++ [(parallel [(set (match_dup 3)
++ (and:SI (match_dup 4)
++ (match_dup 5)))
++ (clobber (reg:CC CC_REGNO))])
++ (parallel [(set (match_dup 6)
++ (and:SI (match_dup 7)
++ (match_dup 8)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart (SImode, operands[1]);
++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_expand "iorqi3"
++ [(parallel
++ [(set (match_operand:QI 0 "memory_operand" "")
++ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "")
++ (match_operand:QI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], QImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++ }")
++
++(define_insn "iorqi3_or1"
++ [(set (match_operand:QI 0 "memory_operand" "=m, m")
++ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "@
++ or.1\\t%0, %2, %1
++ or.1\\t%0, %1, %2")
++
++(define_expand "iorhi3"
++ [(parallel
++ [(set (match_operand:HI 0 "memory_operand" "")
++ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "")
++ (match_operand:HI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ if (!memory_operand (operands[0], HImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++ }")
++
++(define_insn "iorhi3_or2"
++ [(set (match_operand:HI 0 "memory_operand" "=m, m")
++ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ or.2\\t%0, %2, %1
++ or.2\\t%0, %1, %2")
++
++(define_expand "iorsi3"
++ [(parallel
++ [(set (match_operand:SI 0 "nonimmediate_operand" "")
++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "")
++ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ do
++ {
++ /* Is this a bset? */
++ if (CONST_INT_P (operands[2])
++ && exact_log2 (INTVAL (operands[2])) != -1)
++ break;
++
++ /* Must be an or.4 */
++ if (!ubicom32_data_register_operand (operands[1], SImode))
++ operands[1] = copy_to_mode_reg (SImode, operands[1]);
++
++ if (!ubicom32_arith_operand (operands[2], SImode))
++ operands[2] = copy_to_mode_reg (SImode, operands[2]);
++ }
++ while (0);
++ }")
++
++(define_insn "iorsi3_bset"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
++ (match_operand 2 "const_int_operand" "n")))
++ (clobber (reg:CC CC_REGNO))]
++ "(exact_log2 (INTVAL (operands[2])) != -1)"
++ "bset\\t%0, %1, #%d2")
++
++(define_insn "iorsi3_or4"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ or.4\\t%0, %2, %1
++ or.4\\t%0, %1, %2")
++
++(define_insn "iorsi3_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (ior:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ or.4\\t%0, %2, %1
++ or.4\\t%0, %1, %2")
++
++(define_insn "iorsi3_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ or.4\\t#0, %1, %0
++ or.4\\t#0, %0, %1")
++
++(define_expand "iordi3"
++ [(parallel
++ [(set (match_operand:DI 0 "nonimmediate_operand" "")
++ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
++ (match_operand:DI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++ }")
++
++(define_insn_and_split "iordi3_or4"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
++ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ "reload_completed"
++ [(parallel [(set (match_dup 3)
++ (ior:SI (match_dup 4)
++ (match_dup 5)))
++ (clobber (reg:CC CC_REGNO))])
++ (parallel [(set (match_dup 6)
++ (ior:SI (match_dup 7)
++ (match_dup 8)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart (SImode, operands[1]);
++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_expand "xorqi3"
++ [(parallel
++ [(set (match_operand:QI 0 "memory_operand" "")
++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "")
++ (match_operand:QI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ "(ubicom32_v4)"
++ "{
++ if (!memory_operand (operands[0], QImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (QImode, operands[2]);
++ }")
++
++(define_insn "xorqi3_xor1"
++ [(set (match_operand:QI 0 "memory_operand" "=m, m")
++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "@
++ xor.1\\t%0, %2, %1
++ xor.1\\t%0, %1, %2")
++
++(define_insn "xorqi3_xor1_ccszn"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:QI 0 "memory_operand" "=m, m")
++ (xor:QI (match_dup 1)
++ (match_dup 2)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "@
++ xor.1\\t%0, %2, %1
++ xor.1\\t%0, %1, %2")
++
++(define_insn "xorqi3_xor1_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "@
++ xor.1\\t#0, %1, %0
++ xor.1\\t#0, %0, %1")
++
++(define_insn "xor1_ccszn_null_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "xor.1\\t#0, %1, %0")
++
++(define_insn "xor1_ccszn_null_2"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (subreg:SI
++ (match_operand:QI 1 "memory_operand" "m")
++ 0))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "xor.1\\t#0, %1, %0")
++
++(define_insn "xor1_ccwzn_null_3"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:QI
++ (xor:SI (subreg:SI
++ (match_operand:QI 0 "memory_operand" "m")
++ 0)
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
++ 3)
++ (const_int 0)))]
++ "(ubicom32_v4
++ && ubicom32_match_cc_mode(insn, CCSZNmode))"
++ "xor.1\\t#0, %0, %1")
++
++(define_expand "xorhi3"
++ [(parallel
++ [(set (match_operand:HI 0 "memory_operand" "")
++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "")
++ (match_operand:HI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ if (!memory_operand (operands[0], HImode))
++ FAIL;
++
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (HImode, operands[2]);
++ }")
++
++(define_insn "xorhi3_xor2"
++ [(set (match_operand:HI 0 "memory_operand" "=m, m")
++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ xor.2\\t%0, %2, %1
++ xor.2\\t%0, %1, %2")
++
++(define_insn "xorhi3_xor2_ccszn"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:HI 0 "memory_operand" "=m, m")
++ (xor:HI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "@
++ xor.2\\t%0, %2, %1
++ xor.2\\t%0, %1, %2")
++
++(define_insn "xorhi3_xor2_ccszn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "@
++ xor.2\\t#0, %1, %0
++ xor.2\\t#0, %0, %1")
++
++(define_insn "xor2_ccszn_null_1"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "xor.2\\t#0, %1, %0")
++
++(define_insn "xor2_ccszn_null_2"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
++ (subreg:SI
++ (match_operand:HI 1 "memory_operand" "m")
++ 0))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "xor.2\\t#0, %1, %0")
++
++(define_insn "xor2_ccszn_null_3"
++ [(set (reg CC_REGNO)
++ (compare
++ (subreg:HI
++ (xor:SI (subreg:SI
++ (match_operand:HI 0 "memory_operand" "m")
++ 0)
++ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
++ 2)
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCSZNmode)"
++ "xor.2\\t#0, %0, %1")
++
++(define_insn "xorsi3"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "@
++ xor.4\\t%0, %2, %1
++ xor.4\\t%0, %1, %2")
++
++(define_insn "xorsi3_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
++ (xor:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ xor.4\\t%0, %2, %1
++ xor.4\\t%0, %1, %2")
++
++(define_insn "xorsi3_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "@
++ xor.4\\t#0, %1, %0
++ xor.4\\t#0, %0, %1")
++
++(define_expand "xordi3"
++ [(parallel
++ [(set (match_operand:DI 0 "nonimmediate_operand" "")
++ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "")
++ (match_operand:DI 2 "ubicom32_arith_operand" "")))
++ (clobber (reg:CC CC_REGNO))])]
++ ""
++ "{
++ /* If we have a non-data reg for operand 1 then prefer that over
++ a CONST_INT in operand 2. */
++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
++ && CONST_INT_P (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++
++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
++ operands[2] = copy_to_mode_reg (DImode, operands[2]);
++ }")
++
++(define_insn_and_split "xordi3_xor4"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
++ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ "reload_completed"
++ [(parallel [(set (match_dup 3)
++ (xor:SI (match_dup 4)
++ (match_dup 5)))
++ (clobber (reg:CC CC_REGNO))])
++ (parallel [(set (match_dup 6)
++ (xor:SI (match_dup 7)
++ (match_dup 8)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[3] = gen_lowpart (SImode, operands[0]);
++ operands[4] = gen_lowpart (SImode, operands[1]);
++ operands[5] = gen_lowpart (SImode, operands[2]);
++ operands[6] = gen_highpart (SImode, operands[0]);
++ operands[7] = gen_highpart (SImode, operands[1]);
++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
++ }"
++ [(set_attr "length" "8")])
++
++(define_insn "not2_2"
++ [(set (match_operand:HI 0 "memory_operand" "=m")
++ (subreg:HI
++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
++ 2))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "not.2\\t%0, %1")
++
++(define_insn "one_cmplsi2"
++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "not.4\\t%0, %1")
++
++(define_insn "one_cmplsi2_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
++ (not:SI (match_dup 1)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "not.4\\t%0, %1")
++
++(define_insn "one_cmplsi2_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI"))
++ (const_int 0)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "not.4\\t#0, %0")
++
++(define_insn_and_split "one_cmpldi2"
++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
++ (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "#"
++ ""
++ [(parallel [(set (match_dup 2)
++ (not:SI (match_dup 3)))
++ (clobber (reg:CC CC_REGNO))])
++ (parallel [(set (match_dup 4)
++ (not:SI (match_dup 5)))
++ (clobber (reg:CC CC_REGNO))])]
++ "{
++ operands[2] = gen_lowpart (SImode, operands[0]);
++ operands[3] = gen_lowpart (SImode, operands[1]);
++ operands[4] = gen_highpart (SImode, operands[0]);
++ operands[5] = gen_highpart (SImode, operands[1]);
++ }"
++ [(set_attr "length" "8")])
++
++; Conditional jump instructions
++
++(define_expand "beq"
++ [(set (pc)
++ (if_then_else (eq (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bne"
++ [(set (pc)
++ (if_then_else (ne (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bgt"
++ [(set (pc)
++ (if_then_else (gt (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "ble"
++ [(set (pc)
++ (if_then_else (le (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bge"
++ [(set (pc)
++ (if_then_else (ge (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "blt"
++ [(set (pc)
++ (if_then_else (lt (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bgtu"
++ [(set (pc)
++ (if_then_else (gtu (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bleu"
++ [(set (pc)
++ (if_then_else (leu (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bgeu"
++ [(set (pc)
++ (if_then_else (geu (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_expand "bltu"
++ [(set (pc)
++ (if_then_else (ltu (match_dup 1)
++ (const_int 0))
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "{
++ operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0,
++ ubicom32_compare_op1);
++ }")
++
++(define_insn "jcc"
++ [(set (pc)
++ (if_then_else (match_operator 1 "comparison_operator"
++ [(match_operand 2 "ubicom32_cc_register_operand" "")
++ (const_int 0)])
++ (label_ref (match_operand 0 "" ""))
++ (pc)))]
++ ""
++ "*
++ {
++ ubicom32_output_cond_jump (insn, operands[1], operands[0]);
++ return \"\";
++ }")
++
++; Reverse branch - reverse our comparison condition so that we can
++; branch in the opposite sense.
++;
++(define_insn_and_split "jcc_reverse"
++ [(set (pc)
++ (if_then_else (match_operator 1 "comparison_operator"
++ [(match_operand 2 "ubicom32_cc_register_operand" "")
++ (const_int 0)])
++ (pc)
++ (label_ref (match_operand 0 "" ""))))]
++ ""
++ "#"
++ "reload_completed"
++ [(set (pc)
++ (if_then_else (match_dup 3)
++ (label_ref (match_dup 0))
++ (pc)))]
++ "{
++ rtx cc_reg;
++
++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
++ operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])),
++ GET_MODE (operands[1]),
++ cc_reg,
++ const0_rtx);
++ }")
++
++(define_insn "jump"
++ [(set (pc)
++ (label_ref (match_operand 0 "" "")))]
++ ""
++ "jmpt\\t%l0")
++
++(define_expand "indirect_jump"
++ [(parallel [(set (pc)
++ (match_operand:SI 0 "register_operand" ""))
++ (clobber (match_dup 0))])]
++ ""
++ "")
++
++(define_insn "indirect_jump_internal"
++ [(set (pc)
++ (match_operand:SI 0 "register_operand" "a"))
++ (clobber (match_dup 0))]
++ ""
++ "calli\\t%0,0(%0)")
++
++; Program Space: The table contains instructions, typically jumps.
++; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address.
++; <Jump Table is Here> ;An -> Here.
++; LEA Ak, (An,Dn) ;Ak -> Table Entry
++; JMP/CALL (Ak)
++
++(define_expand "tablejump"
++ [(parallel [(set (pc)
++ (match_operand:SI 0 "nonimmediate_operand" ""))
++ (use (label_ref (match_operand 1 "" "")))])]
++ ""
++ "")
++
++(define_insn "tablejump_internal"
++ [(set (pc)
++ (match_operand:SI 0 "nonimmediate_operand" "rm"))
++ (use (label_ref (match_operand 1 "" "")))]
++ ""
++ "ret\\t%0")
++
++; Call subroutine with no return value.
++;
++(define_expand "call"
++ [(call (match_operand:QI 0 "general_operand" "")
++ (match_operand:SI 1 "general_operand" ""))]
++ ""
++ "{
++ if (TARGET_FDPIC)
++ {
++ ubicom32_expand_call_fdpic (operands);
++ DONE;
++ }
++
++ if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode))
++ XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
++ }")
++
++; We expand to a simple form that doesn't clobber the link register and
++; then split to a form that does. This allows the RTL optimizers that
++; run before the splitter to have the opportunity to eliminate the call
++; without marking A5 as being clobbered and this in turn avoids saves
++; and returns in a number of cases.
++;
++(define_insn_and_split "call_1"
++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 1 "general_operand" "g,g"))]
++ "! TARGET_FDPIC"
++ "#"
++ ""
++ [(parallel
++ [(call (mem:QI (match_dup 0))
++ (match_dup 1))
++ (clobber (reg:SI LINK_REGNO))])]
++ "")
++
++(define_insn "call_slow"
++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 1 "general_operand" "g,g"))
++ (clobber (reg:SI LINK_REGNO))]
++ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
++ "@
++ calli\\ta5, 0(%0)
++ moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)")
++
++(define_insn "call_fast"
++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 1 "general_operand" "g,g"))
++ (clobber (reg:SI LINK_REGNO))]
++ "(! TARGET_FDPIC && TARGET_FASTCALL)"
++ "@
++ calli\\ta5, 0(%0)
++ call\\ta5, %C0")
++
++; We expand to a simple form that doesn't clobber the link register and
++; then split to a form that does. This allows the RTL optimizers that
++; run before the splitter to have the opportunity to eliminate the call
++; without marking A5 as being clobbered and this in turn avoids saves
++; and returns in a number of cases.
++;
++(define_insn_and_split "call_fdpic"
++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 1 "general_operand" "g,g"))
++ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))]
++ "TARGET_FDPIC"
++ "#"
++ ""
++ [(parallel
++ [(call (mem:QI (match_dup 0))
++ (match_dup 1))
++ (use (match_dup 2))
++ (clobber (reg:SI LINK_REGNO))])]
++ "")
++
++(define_insn "call_fdpic_clobber"
++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 1 "general_operand" "g,g"))
++ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))
++ (clobber (reg:SI LINK_REGNO))]
++ "TARGET_FDPIC"
++ "@
++ move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5)
++ call\\ta5, %C0")
++
++; Call subroutine, returning value in operand 0
++; (which must be a hard register).
++;
++(define_expand "call_value"
++ [(set (match_operand 0 "" "")
++ (call (match_operand:QI 1 "general_operand" "")
++ (match_operand:SI 2 "general_operand" "")))]
++ ""
++ "{
++ if (TARGET_FDPIC)
++ {
++ ubicom32_expand_call_value_fdpic (operands);
++ DONE;
++ }
++
++ if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode))
++ XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
++ }")
++
++; We expand to a simple form that doesn't clobber the link register and
++; then split to a form that does. This allows the RTL optimizers that
++; run before the splitter to have the opportunity to eliminate the call
++; without marking A5 as being clobbered and this in turn avoids saves
++; and returns in a number of cases.
++;
++(define_insn_and_split "call_value_1"
++ [(set (match_operand 0 "register_operand" "=r,r")
++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 2 "general_operand" "g,g")))]
++ "! TARGET_FDPIC"
++ "#"
++ ""
++ [(parallel
++ [(set (match_dup 0)
++ (call (mem:QI (match_dup 1))
++ (match_dup 2)))
++ (clobber (reg:SI LINK_REGNO))])]
++ "")
++
++(define_insn "call_value_slow"
++ [(set (match_operand 0 "register_operand" "=r,r")
++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 2 "general_operand" "g,g")))
++ (clobber (reg:SI LINK_REGNO))]
++ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
++ "@
++ calli\\ta5, 0(%1)
++ moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)")
++
++(define_insn "call_value_fast"
++ [(set (match_operand 0 "register_operand" "=r,r")
++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 2 "general_operand" "g,g")))
++ (clobber (reg:SI LINK_REGNO))]
++ "(! TARGET_FDPIC && TARGET_FASTCALL)"
++ "@
++ calli\\ta5, 0(%1)
++ call\\ta5, %C1")
++
++; We expand to a simple form that doesn't clobber the link register and
++; then split to a form that does. This allows the RTL optimizers that
++; run before the splitter to have the opportunity to eliminate the call
++; without marking A5 as being clobbered and this in turn avoids saves
++; and returns in a number of cases.
++;
++(define_insn_and_split "call_value_fdpic"
++ [(set (match_operand 0 "register_operand" "=r,r")
++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 2 "general_operand" "g,g")))
++ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))]
++ "TARGET_FDPIC"
++ "#"
++ ""
++ [(parallel
++ [(set (match_dup 0)
++ (call (mem:QI (match_dup 1))
++ (match_dup 2)))
++ (use (match_dup 3))
++ (clobber (reg:SI LINK_REGNO))])]
++ "")
++
++(define_insn "call_value_fdpic_clobber"
++ [(set (match_operand 0 "register_operand" "=r,r")
++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
++ (match_operand:SI 2 "general_operand" "g,g")))
++ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))
++ (clobber (reg:SI LINK_REGNO))]
++ "TARGET_FDPIC"
++ "@
++ move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5)
++ call\\ta5, %C1")
++
++(define_expand "untyped_call"
++ [(parallel [(call (match_operand 0 "" "")
++ (const_int 0))
++ (match_operand 1 "" "")
++ (match_operand 2 "" "")])]
++ ""
++ "{
++ int i;
++
++ emit_call_insn (gen_call (operands[0], const0_rtx));
++
++ for (i = 0; i < XVECLEN (operands[2], 0); i++)
++ {
++ rtx set = XVECEXP (operands[2], 0, i);
++ emit_move_insn (SET_DEST (set), SET_SRC (set));
++ }
++ DONE;
++ }")
++
++(define_insn "lsl1_1"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashift:SI (subreg:SI
++ (match_operand:QI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "lsl.1\\t%0, %1, %2")
++
++; The combiner gets rather creative about left shifts of sub-word memory
++; operands because it's uncertain about whether the memory is sign or
++; zero extended. It only wants zero-extended behaviour and so throws
++; in an extra and operation.
++;
++(define_insn "lsl1_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (and:SI
++ (ashift:SI (subreg:SI
++ (match_operand:QI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "const_int_operand" "M"))
++ (match_operand:SI 3 "const_int_operand" "n")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))"
++ "lsl.1\\t%0, %1, %2")
++
++(define_insn "lsl2_1"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashift:SI (subreg:SI
++ (match_operand:HI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "lsl.2\\t%0, %1, %2")
++
++; The combiner gets rather creative about left shifts of sub-word memory
++; operands because it's uncertain about whether the memory is sign or
++; zero extended. It only wants zero-extended behaviour and so throws
++; in an extra and operation.
++;
++(define_insn "lsl2_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (and:SI
++ (ashift:SI (subreg:SI
++ (match_operand:HI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "const_int_operand" "M"))
++ (match_operand:SI 3 "const_int_operand" "n")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))"
++ "lsl.2\\t%0, %1, %2")
++
++(define_insn "ashlsi3"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "lsl.4\\t%0, %1, %2")
++
++(define_insn "lshlsi3_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashift:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "lsl.4\\t%0, %1, %2")
++
++(define_insn "lshlsi3_ccwz_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "lsl.4\\t%2, %0, %1")
++
++; The combiner finds this canonical form for what is in essence a right
++; shift.
++;
++(define_insn "asr1_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (sign_extract:SI (match_operand:QI 1 "memory_operand" "m")
++ (match_operand:SI 2 "const_int_operand" "M")
++ (match_operand:SI 3 "const_int_operand" "M")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
++ "asr.1\\t%0, %1, %3")
++
++; The combiner finds this canonical form for what is in essence a right
++; shift.
++;
++(define_insn "asr2_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (sign_extract:SI (match_operand:HI 1 "memory_operand" "m")
++ (match_operand:SI 2 "const_int_operand" "M")
++ (match_operand:SI 3 "const_int_operand" "M")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
++ "asr.2\\t%0, %1, %3")
++
++(define_insn "ashrsi3"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "asr.4\\t%0, %1, %2")
++
++(define_insn "ashrsi3_ccwzn"
++ [(set (reg CC_REGNO)
++ (compare
++ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ashiftrt:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "asr.4\\t%0, %1, %2")
++
++(define_insn "ashrsi3_ccwzn_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ")
++ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ "ubicom32_match_cc_mode(insn, CCWZNmode)"
++ "asr.4\\t%2, %0, %1")
++
++(define_insn "lsr1_1"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (lshiftrt:SI (subreg:SI
++ (match_operand:QI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "lsr.1\\t%0, %1, %2")
++
++; The combiner finds this canonical form for what is in essence a right
++; shift.
++;
++(define_insn "lsr1_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (zero_extract:SI (match_operand:QI 1 "memory_operand" "m")
++ (match_operand:SI 2 "const_int_operand" "M")
++ (match_operand:SI 3 "const_int_operand" "M")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
++ "lsr.1\\t%0, %1, %3")
++
++(define_insn "lsr2_1"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (lshiftrt:SI (subreg:SI
++ (match_operand:HI 1 "memory_operand" "m")
++ 0)
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4)"
++ "lsr.2\\t%0, %1, %2")
++
++; The combiner finds this canonical form for what is in essence a right
++; shift.
++;
++(define_insn "lsr2_2"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (zero_extract:SI (match_operand:HI 1 "memory_operand" "m")
++ (match_operand:SI 2 "const_int_operand" "M")
++ (match_operand:SI 3 "const_int_operand" "M")))
++ (clobber (reg:CC CC_REGNO))]
++ "(ubicom32_v4
++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
++ "lsr.2\\t%0, %1, %3")
++
++(define_insn "lshrsi3"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "lsr.4\\t%0, %1, %2")
++
++(define_insn "lshrsi3_ccwz"
++ [(set (reg CC_REGNO)
++ (compare
++ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (lshiftrt:SI (match_dup 1)
++ (match_dup 2)))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "lsr.4\\t%0, %1, %2")
++
++(define_insn "lshrsi3_ccwz_null"
++ [(set (reg CC_REGNO)
++ (compare
++ (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
++ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
++ (const_int 0)))
++ (clobber (match_scratch:SI 2 "=d"))]
++ "ubicom32_match_cc_mode(insn, CCWZmode)"
++ "lsr.4\\t%2, %0, %1")
++
++(define_expand "prologue"
++ [(const_int 0)]
++ ""
++ "{
++ ubicom32_expand_prologue ();
++ DONE;
++ }")
++
++(define_expand "epilogue"
++ [(return)]
++ ""
++ "{
++ ubicom32_expand_epilogue ();
++ DONE;
++ }")
++
++(define_expand "return"
++ [(return)]
++ ""
++ "{
++ ubicom32_expand_epilogue ();
++ DONE;
++ }")
++
++(define_expand "_eh_return"
++ [(use (match_operand:SI 0 "register_operand" "r"))
++ (use (match_operand:SI 1 "register_operand" "r"))]
++ ""
++ "{
++ ubicom32_expand_eh_return (operands);
++ DONE;
++ }")
++
++; XXX - it looks almost certain that we could make return_internal use a Dn
++; register too. In that instance we'd have to use a ret instruction
++; rather than a calli but it might save cycles.
++;
++(define_insn "return_internal"
++ [(const_int 2)
++ (return)
++ (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))]
++ ""
++ "*
++ {
++ if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO
++ && ubicom32_can_use_calli_to_ret)
++ return \"calli\\t%0, 0(%0)\";
++
++ return \"ret\\t%0\";
++ }")
++
++(define_insn "return_from_post_modify_sp"
++ [(parallel
++ [(const_int 2)
++ (return)
++ (use (mem:SI (post_modify:SI
++ (reg:SI SP_REGNO)
++ (plus:SI (reg:SI SP_REGNO)
++ (match_operand:SI 0 "const_int_operand" "n")))))])]
++ "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4"
++ "ret\\t(sp)%E0++")
++
++;(define_insn "eh_return_internal"
++; [(const_int 4)
++; (return)
++; (use (reg:SI 34))]
++; ""
++; "ret\\ta2")
++
++; No operation, needed in case the user uses -g but not -O.
++(define_expand "nop"
++ [(const_int 0)]
++ ""
++ "")
++
++(define_insn "nop_internal"
++ [(const_int 0)]
++ ""
++ "nop")
++
++; The combiner will generate this pattern given shift and add operations.
++; The canonical form that the combiner wants to use appears to be multiplies
++; instead of shifts even if the compiled sources use shifts.
++;
++(define_insn "shmrg1_add"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (plus:SI
++ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 256))
++ (zero_extend:SI
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "shmrg.1\\t%0, %2, %1")
++
++; The combiner will generate this pattern given shift and or operations.
++;
++(define_insn "shmrg1_ior"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ior:SI
++ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 8))
++ (zero_extend:SI
++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "shmrg.1\\t%0, %2, %1")
++
++; The combiner will generate this pattern given shift and add operations.
++; The canonical form that the combiner wants to use appears to be multiplies
++; instead of shifts even if the compiled sources use shifts.
++;
++(define_insn "shmrg2_add"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (plus:SI
++ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 65536))
++ (zero_extend:SI
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "shmrg.2\\t%0, %2, %1")
++
++; The combiner will generate this pattern given shift and or operations.
++;
++(define_insn "shmrg2_ior"
++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
++ (ior:SI
++ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
++ (const_int 16))
++ (zero_extend:SI
++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
++ (clobber (reg:CC CC_REGNO))]
++ ""
++ "shmrg.2\\t%0, %2, %1")
++
++; Match the case where we load a word from the stack but then discard the
++; upper 16 bits. We turn this into a zero-extended load of that useful
++; 16 bits direct from the stack where possible.
++;
++
++; XXX - do these peephole2 ops actually work after the CCmode conversion?
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mem:SI (plus:SI (reg:SI SP_REGNO)
++ (match_operand:SI 1 "const_int_operand" ""))))
++ (set (match_operand:SI 2 "nonimmediate_operand" "")
++ (zero_extend:SI (match_operand:HI 3 "register_operand" "")))]
++ "(INTVAL (operands[1]) <= 252
++ && REGNO (operands[3]) == REGNO (operands[0])
++ && ((peep2_reg_dead_p (2, operands[0])
++ && ! reg_mentioned_p (operands[0], operands[2]))
++ || rtx_equal_p (operands[0], operands[2])))"
++ [(set (match_dup 2)
++ (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO)
++ (match_dup 4)))))]
++ "{
++ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
++ }")
++
++; Match the case where we load a word from the stack but then discard the
++; upper 16 bits. We turn this into a 16-bit load of that useful
++; 16 bits direct from the stack where possible.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mem:SI (plus:SI (reg:SI SP_REGNO)
++ (match_operand:SI 1 "const_int_operand" ""))))
++ (set (match_operand:HI 2 "nonimmediate_operand" "")
++ (match_operand:HI 3 "register_operand" ""))]
++ "(INTVAL (operands[1]) <= 252
++ && REGNO (operands[3]) == REGNO (operands[0])
++ && ((peep2_reg_dead_p (2, operands[0])
++ && ! reg_mentioned_p (operands[0], operands[2]))
++ || rtx_equal_p (operands[0], operands[2])))"
++ [(set (match_dup 2)
++ (mem:HI (plus:SI (reg:SI SP_REGNO)
++ (match_dup 4))))]
++ "{
++ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
++ }")
++
++; Match the case where we load a word from the stack but then discard the
++; upper 24 bits. We turn this into a zero-extended load of that useful
++; 8 bits direct from the stack where possible.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mem:SI (plus:SI (reg:SI SP_REGNO)
++ (match_operand:SI 1 "const_int_operand" ""))))
++ (set (match_operand:SI 2 "nonimmediate_operand" "")
++ (zero_extend:SI (match_operand:QI 3 "register_operand" "")))]
++ "(INTVAL (operands[1]) <= 124
++ && REGNO (operands[3]) == REGNO (operands[0])
++ && ((peep2_reg_dead_p (2, operands[0])
++ && ! reg_mentioned_p (operands[0], operands[2]))
++ || rtx_equal_p (operands[0], operands[2])))"
++ [(set (match_dup 2)
++ (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO)
++ (match_dup 4)))))]
++ "{
++ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
++ }")
++
++; Match the case where we load a word from the stack but then discard the
++; upper 24 bits. We turn this into an 8-bit load of that useful
++; 8 bits direct from the stack where possible.
++;
++(define_peephole2
++ [(set (match_operand:SI 0 "register_operand" "")
++ (mem:SI (plus:SI (reg:SI SP_REGNO)
++ (match_operand:SI 1 "const_int_operand" ""))))
++ (set (match_operand:QI 2 "nonimmediate_operand" "")
++ (match_operand:QI 3 "register_operand" ""))]
++ "(INTVAL (operands[1]) <= 124
++ && REGNO (operands[3]) == REGNO (operands[0])
++ && ((peep2_reg_dead_p (2, operands[0])
++ && ! reg_mentioned_p (operands[0], operands[2]))
++ || rtx_equal_p (operands[0], operands[2])))"
++ [(set (match_dup 2)
++ (mem:QI (plus:SI (reg:SI SP_REGNO)
++ (match_dup 4))))]
++ "{
++ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
++ }")
++
+--- /dev/null
++++ b/gcc/config/ubicom32/ubicom32.opt
+@@ -0,0 +1,27 @@
++mdebug-address
++Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS)
++Debug addresses
++
++mdebug-context
++Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT)
++Debug contexts
++
++march=
++Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined
++Specify the name of the target architecture
++
++mfdpic
++Target Report Mask(FDPIC)
++Enable Function Descriptor PIC mode
++
++minline-plt
++Target Report Mask(INLINE_PLT)
++Enable inlining of PLT in function calls
++
++mfastcall
++Target Report Mask(FASTCALL)
++Enable default fast (call) calling sequence for smaller applications
++
++mipos-abi
++Target Report Mask(IPOS_ABI)
++Enable the ipOS ABI in which D10-D13 are caller-clobbered
+--- /dev/null
++++ b/gcc/config/ubicom32/uclinux.h
+@@ -0,0 +1,67 @@
++/* Definitions of target machine for Ubicom32-uclinux
++
++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
++ 2009 Free Software Foundation, Inc.
++ Contributed by Ubicom, Inc.
++
++ This file is part of GCC.
++
++ GCC is free software; you can redistribute it and/or modify it
++ under the terms of the GNU General Public License as published
++ by the Free Software Foundation; either version 3, or (at your
++ option) any later version.
++
++ GCC is distributed in the hope that it will be useful, but WITHOUT
++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
++ License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with GCC; see the file COPYING3. If not see
++ <http://www.gnu.org/licenses/>. */
++
++/* Don't assume anything about the header files. */
++#define NO_IMPLICIT_EXTERN_C
++
++#undef LIB_SPEC
++#define LIB_SPEC \
++ "%{pthread:-lpthread} " \
++ "%{!shared:%{!symbolic: -lc}} "
++
++
++#undef LINK_GCC_C_SEQUENCE_SPEC
++#define LINK_GCC_C_SEQUENCE_SPEC \
++ "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} "
++
++#undef STARTFILE_SPEC
++#define STARTFILE_SPEC \
++ "%{!shared: crt1%O%s}" \
++ " crti%O%s crtbegin%O%s"
++
++#undef ENDFILE_SPEC
++#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
++
++/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that
++ we want to support both flat and ELF output. */
++#define OBJECT_FORMAT_FLAT
++
++#undef DRIVER_SELF_SPECS
++#define DRIVER_SELF_SPECS \
++ "%{!mno-fastcall:-mfastcall}"
++
++/* taken from linux.h */
++/* The GNU C++ standard library requires that these macros be defined. */
++#undef CPLUSPLUS_CPP_SPEC
++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
++
++#define TARGET_OS_CPP_BUILTINS() \
++ do { \
++ builtin_define_std ("__UBICOM32__"); \
++ builtin_define_std ("__ubicom32__"); \
++ builtin_define ("__gnu_linux__"); \
++ builtin_define_std ("linux"); \
++ builtin_define_std ("unix"); \
++ builtin_assert ("system=linux"); \
++ builtin_assert ("system=unix"); \
++ builtin_assert ("system=posix"); \
++ } while (0)
+--- /dev/null
++++ b/gcc/config/ubicom32/xm-ubicom32.h
+@@ -0,0 +1,36 @@
++/* Configuration for Ubicom's Ubicom32 architecture.
++ Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
++ Foundation, Inc.
++ Contributed by Ubicom Inc.
++
++This file is part of GNU CC.
++
++GNU CC is free software; you can redistribute it and/or modify
++it under the terms of the GNU General Public License as published by
++the Free Software Foundation; either version 2, or (at your option)
++any later version.
++
++GNU CC is distributed in the hope that it will be useful,
++but WITHOUT ANY WARRANTY; without even the implied warranty of
++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++GNU General Public License for more details.
++
++You should have received a copy of the GNU General Public License
++along with GNU CC; see the file COPYING. If not, write to
++the Free Software Foundation, 59 Temple Place - Suite 330,
++Boston, MA 02111-1307, USA. */
++
++/* #defines that need visibility everywhere. */
++#define FALSE 0
++#define TRUE 1
++
++/* This describes the machine the compiler is hosted on. */
++#define HOST_BITS_PER_CHAR 8
++#define HOST_BITS_PER_SHORT 16
++#define HOST_BITS_PER_INT 32
++#define HOST_BITS_PER_LONG 32
++#define HOST_BITS_PER_LONGLONG 64
++
++/* Arguments to use with `exit'. */
++#define SUCCESS_EXIT_CODE 0
++#define FATAL_EXIT_CODE 33
+--- a/gcc/config.gcc
++++ b/gcc/config.gcc
+@@ -2662,6 +2662,34 @@ spu-*-elf*)
+ c_target_objs="${c_target_objs} spu-c.o"
+ cxx_target_objs="${cxx_target_objs} spu-c.o"
+ ;;
++ubicom32-*-elf)
++ xm_file=ubicom32/xm-ubicom32.h
++ tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h
++ tmake_file=ubicom32/t-ubicom32
++ ;;
++ubicom32-*-uclinux*)
++ xm_file=ubicom32/xm-ubicom32.h
++ tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h
++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
++ extra_options="${extra_options} linux.opt"
++ tmake_file=ubicom32/t-ubicom32-uclinux
++ use_collect2=no
++ ;;
++ubicom32-*-linux-uclibc)
++ xm_file=ubicom32/xm-ubicom32.h
++ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
++ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
++ use_collect2=no
++ ;;
++ubicom32-*-linux*)
++ xm_file=ubicom32/xm-ubicom32.h
++ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
++ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
++ use_collect2=no
++ ;;
+ v850e1-*-*)
+ target_cpu_default="TARGET_CPU_v850e1"
+ tm_file="dbxelf.h elfos.h newlib-stdint.h v850/v850.h"
+--- a/libgcc/config.host
++++ b/libgcc/config.host
+@@ -572,6 +572,15 @@ sparc64-*-netbsd*)
+ ;;
+ spu-*-elf*)
+ ;;
++ubicom32*-*-elf*)
++ ;;
++ubicom32*-*-uclinux*)
++ ;;
++ubicom32*-*-linux*)
++ # No need to build crtbeginT.o on uClibc systems. Should probably
++ # be moved to the OS specific section above.
++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
++ ;;
+ v850e1-*-*)
+ ;;
+ v850e-*-*)
diff --git a/toolchain/gcc/patches/4.6-linaro/810-arm-softfloat-libgcc.patch b/toolchain/gcc/patches/4.6-linaro/810-arm-softfloat-libgcc.patch
new file mode 100644
index 000000000..60cfde407
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/810-arm-softfloat-libgcc.patch
@@ -0,0 +1,26 @@
+--- a/gcc/config/arm/linux-elf.h
++++ b/gcc/config/arm/linux-elf.h
+@@ -60,7 +60,7 @@
+ %{shared:-lc} \
+ %{!shared:%{profile:-lc_p}%{!profile:-lc}}"
+
+-#define LIBGCC_SPEC "%{msoft-float:-lfloat} %{mfloat-abi=soft*:-lfloat} -lgcc"
++#define LIBGCC_SPEC "-lgcc"
+
+ #define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.2"
+
+--- a/gcc/config/arm/t-linux
++++ b/gcc/config/arm/t-linux
+@@ -23,7 +23,11 @@ TARGET_LIBGCC2_CFLAGS = -fomit-frame-poi
+
+ LIB1ASMSRC = arm/lib1funcs.asm
+ LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_lnx _clzsi2 _clzdi2 \
+- _arm_addsubdf3 _arm_addsubsf3
++ _arm_addsubdf3 _arm_addsubsf3 \
++ _arm_negdf2 _arm_muldivdf3 _arm_cmpdf2 _arm_unorddf2 \
++ _arm_fixdfsi _arm_fixunsdfsi _arm_truncdfsf2 \
++ _arm_negsf2 _arm_muldivsf3 _arm_cmpsf2 _arm_unordsf2 \
++ _arm_fixsfsi _arm_fixunssfsi
+
+ # MULTILIB_OPTIONS = mhard-float/msoft-float
+ # MULTILIB_DIRNAMES = hard-float soft-float
diff --git a/toolchain/gcc/patches/4.6-linaro/820-libgcc_pic.patch b/toolchain/gcc/patches/4.6-linaro/820-libgcc_pic.patch
new file mode 100644
index 000000000..3760ac2b9
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/820-libgcc_pic.patch
@@ -0,0 +1,36 @@
+--- a/libgcc/Makefile.in
++++ b/libgcc/Makefile.in
+@@ -747,11 +747,12 @@ $(libgcov-objects): %$(objext): $(gcc_sr
+
+ # Static libraries.
+ libgcc.a: $(libgcc-objects)
++libgcc_pic.a: $(libgcc-s-objects)
+ libgcov.a: $(libgcov-objects)
+ libunwind.a: $(libunwind-objects)
+ libgcc_eh.a: $(libgcc-eh-objects)
+
+-libgcc.a libgcov.a libunwind.a libgcc_eh.a:
++libgcc.a libgcov.a libunwind.a libgcc_eh.a libgcc_pic.a:
+ -rm -f $@
+
+ objects="$(objects)"; \
+@@ -773,7 +774,7 @@ libgcc_s$(SHLIB_EXT): libunwind$(SHLIB_E
+ endif
+
+ ifeq ($(enable_shared),yes)
+-all: libgcc_eh.a libgcc_s$(SHLIB_EXT)
++all: libgcc_eh.a libgcc_pic.a libgcc_s$(SHLIB_EXT)
+ ifneq ($(LIBUNWIND),)
+ all: libunwind$(SHLIB_EXT)
+ endif
+@@ -954,6 +955,10 @@ install-shared:
+ chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_eh.a
+ $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_eh.a
+
++ $(INSTALL_DATA) libgcc_pic.a $(mapfile) $(DESTDIR)$(inst_libdir)/
++ chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_pic.a
++ $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_pic.a
++
+ $(subst @multilib_dir@,$(MULTIDIR),$(subst \
+ @shlib_base_name@,libgcc_s,$(subst \
+ @shlib_slibdir_qual@,$(MULTIOSSUBDIR),$(SHLIB_INSTALL))))
diff --git a/toolchain/gcc/patches/4.6-linaro/830-arm_unbreak_armv4t.patch b/toolchain/gcc/patches/4.6-linaro/830-arm_unbreak_armv4t.patch
new file mode 100644
index 000000000..37f8f2a54
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/830-arm_unbreak_armv4t.patch
@@ -0,0 +1,13 @@
+http://sourceware.org/ml/crossgcc/2008-05/msg00009.html
+
+--- a/gcc/config/arm/linux-eabi.h
++++ b/gcc/config/arm/linux-eabi.h
+@@ -45,7 +45,7 @@
+ The ARM10TDMI core is the default for armv5t, so set
+ SUBTARGET_CPU_DEFAULT to achieve this. */
+ #undef SUBTARGET_CPU_DEFAULT
+-#define SUBTARGET_CPU_DEFAULT TARGET_CPU_arm10tdmi
++#define SUBTARGET_CPU_DEFAULT TARGET_CPU_arm9tdmi
+
+ /* TARGET_BIG_ENDIAN_DEFAULT is set in
+ config.gcc for big endian configurations. */
diff --git a/toolchain/gcc/patches/4.6-linaro/840-armv4_pass_fix-v4bx_to_ld.patch b/toolchain/gcc/patches/4.6-linaro/840-armv4_pass_fix-v4bx_to_ld.patch
new file mode 100644
index 000000000..e5a26c17d
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/840-armv4_pass_fix-v4bx_to_ld.patch
@@ -0,0 +1,20 @@
+--- a/gcc/config/arm/linux-eabi.h
++++ b/gcc/config/arm/linux-eabi.h
+@@ -64,12 +64,16 @@
+ #undef GLIBC_DYNAMIC_LINKER
+ #define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.3"
+
++/* For armv4 we pass --fix-v4bx to linker to support EABI */
++#undef TARGET_FIX_V4BX_SPEC
++#define TARGET_FIX_V4BX_SPEC " %{mcpu=arm8|mcpu=arm810|mcpu=strongarm*|march=armv4:--fix-v4bx}"
++
+ /* At this point, bpabi.h will have clobbered LINK_SPEC. We want to
+ use the GNU/Linux version, not the generic BPABI version. */
+ #undef LINK_SPEC
+ #define LINK_SPEC BE8_LINK_SPEC \
+ LINUX_OR_ANDROID_LD (LINUX_TARGET_LINK_SPEC, \
+- LINUX_TARGET_LINK_SPEC " " ANDROID_LINK_SPEC)
++ LINUX_TARGET_LINK_SPEC " " ANDROID_LINK_SPEC) \
+
+ #undef CC1_SPEC
+ #define CC1_SPEC \
diff --git a/toolchain/gcc/patches/4.6-linaro/910-mbsd_multi.patch b/toolchain/gcc/patches/4.6-linaro/910-mbsd_multi.patch
new file mode 100644
index 000000000..5a1adc971
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/910-mbsd_multi.patch
@@ -0,0 +1,253 @@
+
+ This patch brings over a few features from MirBSD:
+ * -fhonour-copts
+ If this option is not given, it's warned (depending
+ on environment variables). This is to catch errors
+ of misbuilt packages which override CFLAGS themselves.
+ * -Werror-maybe-reset
+ Has the effect of -Wno-error if GCC_NO_WERROR is
+ set and not '0', a no-operation otherwise. This is
+ to be able to use -Werror in "make" but prevent
+ GNU autoconf generated configure scripts from
+ freaking out.
+ * Make -fno-strict-aliasing and -fno-delete-null-pointer-checks
+ the default for -O2/-Os, because they trigger gcc bugs
+ and can delete code with security implications.
+
+ This patch was authored by Thorsten Glaser <tg at mirbsd.de>
+ with copyright assignment to the FSF in effect.
+
+--- a/gcc/c-family/c-opts.c
++++ b/gcc/c-family/c-opts.c
+@@ -103,6 +103,9 @@ static size_t deferred_count;
+ /* Number of deferred options scanned for -include. */
+ static size_t include_cursor;
+
++/* Check if a port honours COPTS. */
++static int honour_copts = 0;
++
+ static void handle_OPT_d (const char *);
+ static void set_std_cxx98 (int);
+ static void set_std_cxx0x (int);
+@@ -441,6 +444,9 @@ c_common_handle_option (size_t scode, co
+ global_dc->warning_as_error_requested = value;
+ break;
+
++ case OPT_Werror_maybe_reset:
++ break;
++
+ case OPT_Wformat:
+ set_Wformat (value);
+ break;
+@@ -584,6 +590,12 @@ c_common_handle_option (size_t scode, co
+ flag_no_builtin = !value;
+ break;
+
++ case OPT_fhonour_copts:
++ if (c_language == clk_c) {
++ honour_copts++;
++ }
++ break;
++
+ case OPT_fconstant_string_class_:
+ constant_string_class_name = arg;
+ break;
+@@ -1058,6 +1070,47 @@ c_common_init (void)
+ return false;
+ }
+
++ if (c_language == clk_c) {
++ char *ev = getenv ("GCC_HONOUR_COPTS");
++ int evv;
++ if (ev == NULL)
++ evv = -1;
++ else if ((*ev == '0') || (*ev == '\0'))
++ evv = 0;
++ else if (*ev == '1')
++ evv = 1;
++ else if (*ev == '2')
++ evv = 2;
++ else if (*ev == 's')
++ evv = -1;
++ else {
++ warning (0, "unknown GCC_HONOUR_COPTS value, assuming 1");
++ evv = 1; /* maybe depend this on something like MIRBSD_NATIVE? */
++ }
++ if (evv == 1) {
++ if (honour_copts == 0) {
++ error ("someone does not honour COPTS at all in lenient mode");
++ return false;
++ } else if (honour_copts != 1) {
++ warning (0, "someone does not honour COPTS correctly, passed %d times",
++ honour_copts);
++ }
++ } else if (evv == 2) {
++ if (honour_copts == 0) {
++ error ("someone does not honour COPTS at all in strict mode");
++ return false;
++ } else if (honour_copts != 1) {
++ error ("someone does not honour COPTS correctly, passed %d times",
++ honour_copts);
++ return false;
++ }
++ } else if (evv == 0) {
++ if (honour_copts != 1)
++ inform (0, "someone does not honour COPTS correctly, passed %d times",
++ honour_copts);
++ }
++ }
++
+ return true;
+ }
+
+--- a/gcc/c-family/c.opt
++++ b/gcc/c-family/c.opt
+@@ -363,6 +363,10 @@ Werror-implicit-function-declaration
+ C ObjC RejectNegative Warning Alias(Werror=, implicit-function-declaration)
+ This switch is deprecated; use -Werror=implicit-function-declaration instead
+
++Werror-maybe-reset
++C ObjC C++ ObjC++
++; Documented in common.opt
++
+ Wfloat-equal
+ C ObjC C++ ObjC++ Var(warn_float_equal) Warning
+ Warn if testing floating point numbers for equality
+@@ -794,6 +798,9 @@ C++ ObjC++ Optimization Alias(fexception
+ fhonor-std
+ C++ ObjC++ Ignore Warn(switch %qs is no longer supported)
+
++fhonour-copts
++C ObjC C++ ObjC++ RejectNegative
++
+ fhosted
+ C ObjC
+ Assume normal C execution environment
+--- a/gcc/common.opt
++++ b/gcc/common.opt
+@@ -520,6 +520,10 @@ Werror=
+ Common Joined
+ Treat specified warning as error
+
++Werror-maybe-reset
++Common
++If environment variable GCC_NO_WERROR is set, act as -Wno-error
++
+ Wextra
+ Common Var(extra_warnings) Warning
+ Print extra (possibly unwanted) warnings
+@@ -1156,6 +1160,9 @@ fguess-branch-probability
+ Common Report Var(flag_guess_branch_prob) Optimization
+ Enable guessing of branch probabilities
+
++fhonour-copts
++Common RejectNegative
++
+ ; Nonzero means ignore `#ident' directives. 0 means handle them.
+ ; Generate position-independent code for executables if possible
+ ; On SVR4 targets, it also controls whether or not to emit a
+--- a/gcc/opts.c
++++ b/gcc/opts.c
+@@ -477,8 +477,6 @@ static const struct default_options defa
+ { OPT_LEVELS_2_PLUS, OPT_fschedule_insns2, NULL, 1 },
+ #endif
+ { OPT_LEVELS_2_PLUS, OPT_fregmove, NULL, 1 },
+- { OPT_LEVELS_2_PLUS, OPT_fstrict_aliasing, NULL, 1 },
+- { OPT_LEVELS_2_PLUS, OPT_fstrict_overflow, NULL, 1 },
+ { OPT_LEVELS_2_PLUS, OPT_freorder_blocks, NULL, 1 },
+ { OPT_LEVELS_2_PLUS, OPT_freorder_functions, NULL, 1 },
+ { OPT_LEVELS_2_PLUS, OPT_ftree_vrp, NULL, 1 },
+@@ -494,6 +492,8 @@ static const struct default_options defa
+ { OPT_LEVELS_2_PLUS, OPT_falign_functions, NULL, 1 },
+
+ /* -O3 optimizations. */
++ { OPT_LEVELS_3_PLUS, OPT_fstrict_aliasing, NULL, 1 },
++ { OPT_LEVELS_3_PLUS, OPT_fstrict_overflow, NULL, 1 },
+ { OPT_LEVELS_3_PLUS, OPT_ftree_loop_distribute_patterns, NULL, 1 },
+ { OPT_LEVELS_3_PLUS, OPT_fpredictive_commoning, NULL, 1 },
+ /* Inlining of functions reducing size is a good idea with -Os
+@@ -1399,6 +1399,17 @@ common_handle_option (struct gcc_options
+ opts, opts_set, loc, dc);
+ break;
+
++ case OPT_Werror_maybe_reset:
++ {
++ char *ev = getenv ("GCC_NO_WERROR");
++ if ((ev != NULL) && (*ev != '0'))
++ warnings_are_errors = 0;
++ }
++ break;
++
++ case OPT_fhonour_copts:
++ break;
++
+ case OPT_Wlarger_than_:
+ opts->x_larger_than_size = value;
+ opts->x_warn_larger_than = value != -1;
+--- a/gcc/doc/cppopts.texi
++++ b/gcc/doc/cppopts.texi
+@@ -164,6 +164,11 @@ in older programs. This warning is on b
+ Make all warnings into hard errors. Source code which triggers warnings
+ will be rejected.
+
++ at item -Werror-maybe-reset
++ at opindex Werror-maybe-reset
++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment
++variable is set to anything other than 0 or empty.
++
+ @item -Wsystem-headers
+ @opindex Wsystem-headers
+ Issue warnings for code in system headers. These are normally unhelpful
+--- a/gcc/doc/invoke.texi
++++ b/gcc/doc/invoke.texi
+@@ -240,7 +240,7 @@ Objective-C and Objective-C++ Dialects}.
+ -Wconversion -Wcoverage-mismatch -Wno-cpp -Wno-deprecated @gol
+ -Wno-deprecated-declarations -Wdisabled-optimization @gol
+ -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
+--Wno-endif-labels -Werror -Werror=* @gol
++-Wno-endif-labels -Werror -Werror=* -Werror-maybe-reset @gol
+ -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
+ -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
+ -Wformat-security -Wformat-y2k @gol
+@@ -4495,6 +4495,22 @@ This option is only supported for C and
+ @option{-Wall} and by @option{-pedantic}, which can be disabled with
+ @option{-Wno-pointer-sign}.
+
++ at item -Werror-maybe-reset
++ at opindex Werror-maybe-reset
++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment
++variable is set to anything other than 0 or empty.
++
++ at item -fhonour-copts
++ at opindex fhonour-copts
++If @env{GCC_HONOUR_COPTS} is set to 1, abort if this option is not
++given at least once, and warn if it is given more than once.
++If @env{GCC_HONOUR_COPTS} is set to 2, abort if this option is not
++given exactly once.
++If @env{GCC_HONOUR_COPTS} is set to 0 or unset, warn if this option
++is not given exactly once.
++The warning is quelled if @env{GCC_HONOUR_COPTS} is set to @samp{s}.
++This flag and environment variable only affect the C language.
++
+ @item -Wstack-protector
+ @opindex Wstack-protector
+ @opindex Wno-stack-protector
+@@ -6317,7 +6333,7 @@ so, the first branch is redirected to ei
+ second branch or a point immediately following it, depending on whether
+ the condition is known to be true or false.
+
+-Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
++Enabled at levels @option{-O3}.
+
+ @item -fsplit-wide-types
+ @opindex fsplit-wide-types
+--- a/gcc/java/jvspec.c
++++ b/gcc/java/jvspec.c
+@@ -627,6 +627,7 @@ lang_specific_pre_link (void)
+ class name. Append dummy `.c' that can be stripped by set_input so %b
+ is correct. */
+ set_input (concat (main_class_name, "main.c", NULL));
++ putenv ("GCC_HONOUR_COPTS=s"); /* XXX hack! */
+ err = do_spec (jvgenmain_spec);
+ if (err == 0)
+ {
diff --git a/toolchain/gcc/patches/4.6-linaro/993-arm_insn-opinit-RTX_CODE-fixup.patch b/toolchain/gcc/patches/4.6-linaro/993-arm_insn-opinit-RTX_CODE-fixup.patch
new file mode 100644
index 000000000..864f972d1
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/993-arm_insn-opinit-RTX_CODE-fixup.patch
@@ -0,0 +1,15 @@
+--- a/gcc/config/arm/arm-protos.h
++++ b/gcc/config/arm/arm-protos.h
+@@ -41,11 +41,11 @@ extern unsigned int arm_dbx_register_num
+ extern void arm_output_fn_unwind (FILE *, bool);
+
+
+-#ifdef RTX_CODE
+ extern bool arm_vector_mode_supported_p (enum machine_mode);
+ extern bool arm_small_register_classes_for_mode_p (enum machine_mode);
+ extern int arm_hard_regno_mode_ok (unsigned int, enum machine_mode);
+ extern int const_ok_for_arm (HOST_WIDE_INT);
++#ifdef RTX_CODE
+ extern int arm_split_constant (RTX_CODE, enum machine_mode, rtx,
+ HOST_WIDE_INT, rtx, rtx, int);
+ extern RTX_CODE arm_canonicalize_comparison (RTX_CODE, rtx *, rtx *);
diff --git a/toolchain/gcc/patches/4.6-linaro/999-coldfire.patch b/toolchain/gcc/patches/4.6-linaro/999-coldfire.patch
new file mode 100644
index 000000000..cda4237b4
--- /dev/null
+++ b/toolchain/gcc/patches/4.6-linaro/999-coldfire.patch
@@ -0,0 +1,10 @@
+--- a/gcc/config.gcc
++++ b/gcc/config.gcc
+@@ -1791,6 +1791,7 @@ m68k-*-linux*) # Motorola m68k's runnin
+ if test x$sjlj != x1; then
+ tmake_file="$tmake_file m68k/t-slibgcc-elf-ver"
+ fi
++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-m68kelf"
+ ;;
+ m68k-*-rtems*)
+ default_m68k_cpu=68020