summaryrefslogtreecommitdiffstats
path: root/target/linux/cns3xxx/files/arch/arm/mach-cns3xxx/platsmp.c
blob: 16ad5626513e9df96eb8def0a2b611b0593c7100 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
 *  linux/arch/arm/mach-cns3xxx/platsmp.c
 *
 *  Copyright (C) 2002 ARM Ltd.
 *  Copyright 2012 Gateworks Corporation
 *		   Chris Lang <clang@gateworks.com>
 *         Tim Harvey <tharvey@gateworks.com>
 *
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/smp.h>
#include <linux/io.h>

#include <asm/cacheflush.h>
#include <asm/hardware/gic.h>
#include <asm/smp_scu.h>
#include <asm/unified.h>
#include <asm/fiq.h>
#include <mach/smp.h>
#include <mach/cns3xxx.h>

static struct fiq_handler fh = {
	.name = "cns3xxx-fiq"
};

static unsigned int fiq_buffer[8];

#define FIQ_ENABLED         0x80000000
#define FIQ_GENERATE				0x00010000
#define CNS3XXX_MAP_AREA    0x01000000
#define CNS3XXX_UNMAP_AREA  0x02000000
#define CNS3XXX_FLUSH_RANGE 0x03000000

extern void cns3xxx_secondary_startup(void);
extern unsigned char cns3xxx_fiq_start, cns3xxx_fiq_end;
extern unsigned int fiq_number[2];
extern struct cpu_cache_fns cpu_cache;
struct cpu_cache_fns cpu_cache_save;

#define SCU_CPU_STATUS 0x08
static void __iomem *scu_base;

/*
 * control for which core is the next to come out of the secondary
 * boot "holding pen"
 */
volatile int __cpuinitdata pen_release = -1;

static void __init cns3xxx_set_fiq_regs(void)
{
	struct pt_regs FIQ_regs;
	unsigned int cpu = smp_processor_id();

	if (cpu) {
		FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[4];
		FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(0);
	} else {
		FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[0];
		FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(1);
	}
	set_fiq_regs(&FIQ_regs);
}

static void __init cns3xxx_init_fiq(void)
{
	void *fiqhandler_start;
	unsigned int fiqhandler_length;
	int ret;

	fiqhandler_start = &cns3xxx_fiq_start;
	fiqhandler_length = &cns3xxx_fiq_end - &cns3xxx_fiq_start;

	ret = claim_fiq(&fh);

	if (ret) {
		return;
	}

	set_fiq_handler(fiqhandler_start, fiqhandler_length);
	fiq_buffer[0] = (unsigned int)&fiq_number[0];
	fiq_buffer[3] = 0;
	fiq_buffer[4] = (unsigned int)&fiq_number[1];
	fiq_buffer[7] = 0;
}


/*
 * Write pen_release in a way that is guaranteed to be visible to all
 * observers, irrespective of whether they're taking part in coherency
 * or not.  This is necessary for the hotplug code to work reliably.
 */
static void __cpuinit write_pen_release(int val)
{
	pen_release = val;
	smp_wmb();
	__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
	outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
}

static DEFINE_SPINLOCK(boot_lock);

void __cpuinit platform_secondary_init(unsigned int cpu)
{
	/*
	 * if any interrupts are already enabled for the primary
	 * core (e.g. timer irq), then they will not have been enabled
	 * for us: do so
	 */
	gic_secondary_init(0);

	/*
	 * Setup Secondary Core FIQ regs
	 */
	cns3xxx_set_fiq_regs();

	/*
	 * let the primary processor know we're out of the
	 * pen, then head off into the C entry point
	 */
	write_pen_release(-1);

	/*
	 * Fixup DMA Operations
	 *
	 */
	cpu_cache.dma_map_area = (void *)smp_dma_map_area;
	cpu_cache.dma_unmap_area = (void *)smp_dma_unmap_area;
	cpu_cache.dma_flush_range = (void *)smp_dma_flush_range;

	/*
	 * Synchronise with the boot thread.
	 */
	spin_lock(&boot_lock);
	spin_unlock(&boot_lock);
}

int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
	unsigned long timeout;

	/*
	 * Set synchronisation state between this boot processor
	 * and the secondary one
	 */
	spin_lock(&boot_lock);

	/*
	 * The secondary processor is waiting to be released from
	 * the holding pen - release it, then wait for it to flag
	 * that it has been released by resetting pen_release.
	 *
	 * Note that "pen_release" is the hardware CPU ID, whereas
	 * "cpu" is Linux's internal ID.
	 */
	write_pen_release(cpu);

	/*
	 * Send the secondary CPU a soft interrupt, thereby causing
	 * the boot monitor to read the system wide flags register,
	 * and branch to the address found there.
	 */
	gic_raise_softirq(cpumask_of(cpu), 1);

	timeout = jiffies + (1 * HZ);
	while (time_before(jiffies, timeout)) {
		smp_rmb();
		if (pen_release == -1)
			break;

		udelay(10);
	}

	/*
	 * now the secondary core is starting up let it run its
	 * calibrations, then wait for it to finish
	 */
	spin_unlock(&boot_lock);

	return pen_release != -1 ? -ENOSYS : 0;
}

/*
 * Initialise the CPU possible map early - this describes the CPUs
 * which may be present or become present in the system.
 */
void __init smp_init_cpus(void)
{
	unsigned int i, ncores;
	unsigned int status;

	scu_base = (void __iomem *) CNS3XXX_TC11MP_SCU_BASE_VIRT;

	/* for CNS3xxx SCU_CPU_STATUS must be examined instead of SCU_CONFIGURATION
	 * used in scu_get_core_count
	 */
	status = __raw_readl(scu_base + SCU_CPU_STATUS);
	for (i = 0; i < NR_CPUS+1; i++) {
		if (((status >> (i*2)) & 0x3) == 0)
			set_cpu_possible(i, true);
		else
			break;
	}
	ncores = i;

	set_smp_cross_call(gic_raise_softirq);
}

void __init platform_smp_prepare_cpus(unsigned int max_cpus)
{
	int i;

	/*
	 * Initialise the present map, which describes the set of CPUs
	 * actually populated at the present time.
	 */
	for (i = 0; i < max_cpus; i++) {
		set_cpu_present(i, true);
	}

	/*
	 * enable SCU
	 */
	scu_enable(scu_base);

	/*
	 * Write the address of secondary startup into the
	 * system-wide flags register. The boot monitor waits
	 * until it receives a soft interrupt, and then the
	 * secondary CPU branches to this address.
	 */
	__raw_writel(virt_to_phys(cns3xxx_secondary_startup),
			(void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0600));

	/*
	 * Setup FIQ's for main cpu
	 */
	cns3xxx_init_fiq();
	cns3xxx_set_fiq_regs();
	memcpy((void *)&cpu_cache_save, (void *)&cpu_cache, sizeof(struct cpu_cache_fns));
}


static inline unsigned long cns3xxx_cpu_id(void)
{
	unsigned long cpu;

	asm volatile(
		" mrc p15, 0, %0, c0, c0, 5  @ cns3xxx_cpu_id\n"
		: "=r" (cpu) : : "memory", "cc");
	return (cpu & 0xf);
}

void smp_dma_map_area(const void *addr, size_t size, int dir)
{
	unsigned int cpu;
	unsigned long flags;
	raw_local_irq_save(flags);
	cpu = cns3xxx_cpu_id();
	if (cpu) {
		fiq_buffer[1] = (unsigned int)addr;
		fiq_buffer[2] = size;
		fiq_buffer[3] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));

		cpu_cache_save.dma_map_area(addr, size, dir);
		while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
	} else {

		fiq_buffer[5] = (unsigned int)addr;
		fiq_buffer[6] = size;
		fiq_buffer[7] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));

		cpu_cache_save.dma_map_area(addr, size, dir);
		while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
	}
	raw_local_irq_restore(flags);
}

void smp_dma_unmap_area(const void *addr, size_t size, int dir)
{
	unsigned int cpu;
	unsigned long flags;

	raw_local_irq_save(flags);
	cpu = cns3xxx_cpu_id();
	if (cpu) {

		fiq_buffer[1] = (unsigned int)addr;
		fiq_buffer[2] = size;
		fiq_buffer[3] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));

		cpu_cache_save.dma_unmap_area(addr, size, dir);
		while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
	} else {

		fiq_buffer[5] = (unsigned int)addr;
		fiq_buffer[6] = size;
		fiq_buffer[7] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));

		cpu_cache_save.dma_unmap_area(addr, size, dir);
		while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
	}
	raw_local_irq_restore(flags);
}

void smp_dma_flush_range(const void *start, const void *end)
{
	unsigned int cpu;
	unsigned long flags;
	raw_local_irq_save(flags);
	cpu = cns3xxx_cpu_id();
	if (cpu) {

		fiq_buffer[1] = (unsigned int)start;
		fiq_buffer[2] = (unsigned int)end;
		fiq_buffer[3] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));

		cpu_cache_save.dma_flush_range(start, end);
		while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
	} else {

		fiq_buffer[5] = (unsigned int)start;
		fiq_buffer[6] = (unsigned int)end;
		fiq_buffer[7] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
		smp_mb();
		__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));

		cpu_cache_save.dma_flush_range(start, end);
		while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
	}
	raw_local_irq_restore(flags);
}