/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #include "Mp_Precomp.h" #include "odm_precomp.h" #ifndef index_mapping_NUM_88E #define index_mapping_NUM_88E 15 #endif //#if(DM_ODM_SUPPORT_TYPE & ODM_MP) #define CALCULATE_SWINGTALBE_OFFSET(_offset, _direction, _size, _deltaThermal) \ do {\ for(_offset = 0; _offset < _size; _offset++)\ {\ if(_deltaThermal < thermalThreshold[_direction][_offset])\ {\ if(_offset != 0)\ _offset--;\ break;\ }\ } \ if(_offset >= _size)\ _offset = _size-1;\ } while(0) void configureTxpowerTrack( IN PDM_ODM_T pDM_Odm, OUT PTXPWRTRACK_CFG pConfig ) { #if RTL8812A_SUPPORT //if (IS_HARDWARE_TYPE_8812(pDM_Odm->Adapter)) if(pDM_Odm->SupportICType==ODM_RTL8812) ConfigureTxpowerTrack_8812A(pConfig); //else #endif #if RTL8188E_SUPPORT if(pDM_Odm->SupportICType==ODM_RTL8188E) ConfigureTxpowerTrack_8188E(pConfig); #endif } VOID ODM_TXPowerTrackingCallback_ThermalMeter( #if (DM_ODM_SUPPORT_TYPE & ODM_AP) IN PDM_ODM_T pDM_Odm #else IN PADAPTER Adapter #endif ) { #if !(DM_ODM_SUPPORT_TYPE & ODM_AP) HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //PMGNT_INFO pMgntInfo = &Adapter->MgntInfo; #endif u1Byte ThermalValue = 0, delta, delta_LCK, delta_IQK, offset; u1Byte ThermalValue_AVG_count = 0; u4Byte ThermalValue_AVG = 0; s4Byte ele_A=0, ele_D, TempCCk, X, value32; s4Byte Y, ele_C=0; s1Byte OFDM_index[2], CCK_index=0, OFDM_index_old[2]={0,0}, CCK_index_old=0, index; s1Byte deltaPowerIndex = 0; u4Byte i = 0, j = 0; BOOLEAN is2T = FALSE; BOOLEAN bInteralPA = FALSE; u1Byte OFDM_max_index = 34, rf = (is2T) ? 2 : 1; //OFDM BB Swing should be less than +3.0dB, which is required by Arthur u1Byte Indexforchannel = 0;/*GetRightChnlPlaceforIQK(pHalData->CurrentChannel)*/ enum _POWER_DEC_INC { POWER_DEC, POWER_INC }; #if (DM_ODM_SUPPORT_TYPE == ODM_CE) PDM_ODM_T pDM_Odm = &pHalData->odmpriv; #endif #if (DM_ODM_SUPPORT_TYPE == ODM_MP) PDM_ODM_T pDM_Odm = &pHalData->DM_OutSrc; #endif TXPWRTRACK_CFG c; //4 1. The following TWO tables decide the final index of OFDM/CCK swing table. s1Byte deltaSwingTableIdx[2][index_mapping_NUM_88E] = { // {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}} {0,0,2,3,4,4,5,6,7,7,8,9,10,10,11}, {0,0,1,2,3,4,4,4,4,5,7,8,9,9,10} }; u1Byte thermalThreshold[2][index_mapping_NUM_88E]={ // {{Power decreasing(lower temperature)}, {Power increasing(higher temperature)}} {0,2,4,6,8,10,12,14,16,18,20,22,24,26,27}, {0,2,4,6,8,10,12,14,16,18,20,22,25,25,25} }; #if (DM_ODM_SUPPORT_TYPE & ODM_AP) prtl8192cd_priv priv = pDM_Odm->priv; #endif //4 2. Initilization ( 7 steps in total ) configureTxpowerTrack(pDM_Odm, &c); pDM_Odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; //cosa add for debug pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit = TRUE; #if (MP_DRIVER == 1) pDM_Odm->RFCalibrateInfo.TxPowerTrackControl = pHalData->TxPowerTrackControl; // We should keep updating the control variable according to HalData. // RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files. pDM_Odm->RFCalibrateInfo.RegA24 = 0x090e1317; #endif #if (DM_ODM_SUPPORT_TYPE == ODM_AP) && defined(MP_TEST) if ((OPMODE & WIFI_MP_STATE) || pDM_Odm->priv->pshare->rf_ft_var.mp_specific) { if(pDM_Odm->priv->pshare->mp_txpwr_tracking == FALSE) return; } #endif ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("===>odm_TXPowerTrackingCallback_ThermalMeter_8188E, pDM_Odm->BbSwingIdxCckBase: %d, pDM_Odm->BbSwingIdxOfdmBase: %d \n", pDM_Odm->BbSwingIdxCckBase, pDM_Odm->BbSwingIdxOfdmBase)); if (!pDM_Odm->RFCalibrateInfo.TM_Trigger) { ODM_SetRFReg(pDM_Odm, RF_PATH_A, c.ThermalRegAddr, BIT17 | BIT16, 0x3); pDM_Odm->RFCalibrateInfo.TM_Trigger = 1; return; } ThermalValue = (u1Byte)ODM_GetRFReg(pDM_Odm, RF_PATH_A, c.ThermalRegAddr, 0xfc00); //0x42: RF Reg[15:10] 88E #if !(DM_ODM_SUPPORT_TYPE & ODM_AP) if( ! ThermalValue || ! pDM_Odm->RFCalibrateInfo.TxPowerTrackControl) #else if( ! pDM_Odm->RFCalibrateInfo.TxPowerTrackControl) #endif return; //4 3. Initialize ThermalValues of RFCalibrateInfo if( ! pDM_Odm->RFCalibrateInfo.ThermalValue) { pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; pDM_Odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue; } if(pDM_Odm->RFCalibrateInfo.bReloadtxpowerindex) { ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("reload ofdm index for band switch\n")); } //4 4. Calculate average thermal meter pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue; pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index++; if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index == c.AverageThermalNum) pDM_Odm->RFCalibrateInfo.ThermalValue_AVG_index = 0; for(i = 0; i < c.AverageThermalNum; i++) { if(pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i]) { ThermalValue_AVG += pDM_Odm->RFCalibrateInfo.ThermalValue_AVG[i]; ThermalValue_AVG_count++; } } if(ThermalValue_AVG_count) { ThermalValue = (u1Byte)(ThermalValue_AVG / ThermalValue_AVG_count); ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("AVG Thermal Meter = 0x%x \n", ThermalValue)); } //4 5. Calculate delta, delta_LCK, delta_IQK. delta = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue):(pDM_Odm->RFCalibrateInfo.ThermalValue - ThermalValue); delta_LCK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_LCK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_LCK):(pDM_Odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue); delta_IQK = (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue_IQK)?(ThermalValue - pDM_Odm->RFCalibrateInfo.ThermalValue_IQK):(pDM_Odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue); //4 6. If necessary, do LCK. //if((delta_LCK > pHalData->Delta_LCK) && (pHalData->Delta_LCK != 0)) if ((delta_LCK >= c.Threshold_IQK)) // Delta temperature is equal to or larger than 20 centigrade. { pDM_Odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; (*c.PHY_LCCalibrate)(pDM_Odm); } //3 7. If necessary, move the index of swing table to adjust Tx power. if (delta > 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl) { #if (DM_ODM_SUPPORT_TYPE & (ODM_MP|ODM_CE)) delta = ThermalValue > pHalData->EEPROMThermalMeter?(ThermalValue - pHalData->EEPROMThermalMeter):(pHalData->EEPROMThermalMeter - ThermalValue); #else delta = (ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther)?(ThermalValue - pDM_Odm->priv->pmib->dot11RFEntry.ther):(pDM_Odm->priv->pmib->dot11RFEntry.ther - ThermalValue); #endif //4 7.1 The Final Power Index = BaseIndex + PowerIndexOffset #if (DM_ODM_SUPPORT_TYPE & (ODM_MP|ODM_CE)) if(ThermalValue > pHalData->EEPROMThermalMeter) { #else if(ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther) { #endif CALCULATE_SWINGTALBE_OFFSET(offset, POWER_INC, index_mapping_NUM_88E, delta); pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex; pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = deltaSwingTableIdx[POWER_INC][offset]; } else { CALCULATE_SWINGTALBE_OFFSET(offset, POWER_DEC, index_mapping_NUM_88E, delta); pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex; pDM_Odm->RFCalibrateInfo.DeltaPowerIndex = (-1)*deltaSwingTableIdx[POWER_DEC][offset]; } if (pDM_Odm->RFCalibrateInfo.DeltaPowerIndex == pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast) pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0; else pDM_Odm->RFCalibrateInfo.PowerIndexOffset = pDM_Odm->RFCalibrateInfo.DeltaPowerIndex - pDM_Odm->RFCalibrateInfo.DeltaPowerIndexLast; for(i = 0; i < rf; i++) pDM_Odm->RFCalibrateInfo.OFDM_index[i] = pDM_Odm->BbSwingIdxOfdmBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset; pDM_Odm->RFCalibrateInfo.CCK_index = pDM_Odm->BbSwingIdxCckBase + pDM_Odm->RFCalibrateInfo.PowerIndexOffset; pDM_Odm->BbSwingIdxCck = pDM_Odm->RFCalibrateInfo.CCK_index; pDM_Odm->BbSwingIdxOfdm[RF_PATH_A] = pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A]; ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'CCK' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pDM_Odm->BbSwingIdxCck, pDM_Odm->BbSwingIdxCckBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset)); ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("The 'OFDM' final index(%d) = BaseIndex(%d) + PowerIndexOffset(%d)\n", pDM_Odm->BbSwingIdxOfdm[RF_PATH_A], pDM_Odm->BbSwingIdxOfdmBase, pDM_Odm->RFCalibrateInfo.PowerIndexOffset)); //4 7.1 Handle boundary conditions of index. for(i = 0; i < rf; i++) { if(pDM_Odm->RFCalibrateInfo.OFDM_index[i] > OFDM_max_index) { pDM_Odm->RFCalibrateInfo.OFDM_index[i] = OFDM_max_index; } else if (pDM_Odm->RFCalibrateInfo.OFDM_index[i] < 0) { pDM_Odm->RFCalibrateInfo.OFDM_index[i] = 0; } } if(pDM_Odm->RFCalibrateInfo.CCK_index > c.SwingTableSize_CCK-1) pDM_Odm->RFCalibrateInfo.CCK_index = c.SwingTableSize_CCK-1; else if (pDM_Odm->RFCalibrateInfo.CCK_index < 0) pDM_Odm->RFCalibrateInfo.CCK_index = 0; } else { ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("The thermal meter is unchanged or TxPowerTracking OFF: ThermalValue: %d , pDM_Odm->RFCalibrateInfo.ThermalValue: %d)\n", ThermalValue, pDM_Odm->RFCalibrateInfo.ThermalValue)); pDM_Odm->RFCalibrateInfo.PowerIndexOffset = 0; } ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("TxPowerTracking: [CCK] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.CCK_index, pDM_Odm->BbSwingIdxCckBase)); ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("TxPowerTracking: [OFDM] Swing Current Index: %d, Swing Base Index: %d\n", pDM_Odm->RFCalibrateInfo.OFDM_index[RF_PATH_A], pDM_Odm->BbSwingIdxOfdmBase)); if (pDM_Odm->RFCalibrateInfo.PowerIndexOffset != 0 && pDM_Odm->RFCalibrateInfo.TxPowerTrackControl) { //4 7.2 Configure the Swing Table to adjust Tx Power. pDM_Odm->RFCalibrateInfo.bTxPowerChanged = TRUE; // Always TRUE after Tx Power is adjusted by power tracking. // // 2012/04/23 MH According to Luke's suggestion, we can not write BB digital // to increase TX power. Otherwise, EVM will be bad. // // 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E. if (ThermalValue > pDM_Odm->RFCalibrateInfo.ThermalValue) { //ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, // ("Temperature Increasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n", // pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue)); } else if (ThermalValue < pDM_Odm->RFCalibrateInfo.ThermalValue)// Low temperature { //ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, // ("Temperature Decreasing: delta_pi: %d , delta_t: %d, Now_t: %d, EFUSE_t: %d, Last_t: %d\n", // pDM_Odm->RFCalibrateInfo.PowerIndexOffset, delta, ThermalValue, pHalData->EEPROMThermalMeter, pDM_Odm->RFCalibrateInfo.ThermalValue)); } #if !(DM_ODM_SUPPORT_TYPE & ODM_AP) if (ThermalValue > pHalData->EEPROMThermalMeter) #else if (ThermalValue > pDM_Odm->priv->pmib->dot11RFEntry.ther) #endif { // ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) hugher than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter)); (*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, TXAGC, 0, 0); } else { // ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("Temperature(%d) lower than PG value(%d), increases the power by TxAGC\n", ThermalValue, pHalData->EEPROMThermalMeter)); (*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, BBSWING, RF_PATH_A, Indexforchannel); if(is2T) (*c.ODM_TxPwrTrackSetPwr)(pDM_Odm, BBSWING, RF_PATH_B, Indexforchannel); } pDM_Odm->BbSwingIdxCckBase = pDM_Odm->BbSwingIdxCck; pDM_Odm->BbSwingIdxOfdmBase = pDM_Odm->BbSwingIdxOfdm[RF_PATH_A]; pDM_Odm->RFCalibrateInfo.ThermalValue = ThermalValue; } #if !(DM_ODM_SUPPORT_TYPE & ODM_AP) // if((delta_IQK > pHalData->Delta_IQK) && (pHalData->Delta_IQK != 0)) if ((delta_IQK >= 8)) // Delta temperature is equal to or larger than 20 centigrade. (*c.DoIQK)(pDM_Odm, delta_IQK, ThermalValue, 8); #endif ODM_RT_TRACE(pDM_Odm,ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,("<===dm_TXPowerTrackingCallback_ThermalMeter_8188E\n")); pDM_Odm->RFCalibrateInfo.TXPowercount = 0; } #if (DM_ODM_SUPPORT_TYPE & ODM_MP) VOID phy_PathAStandBy( IN PADAPTER pAdapter ) { RTPRINT(FINIT, INIT_IQK, ("Path-A standby mode!\n")); PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x0); PHY_SetBBReg(pAdapter, 0x840, bMaskDWord, 0x00010000); PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x80800000); } //1 7. IQK //#define MAX_TOLERANCE 5 //#define IQK_DELAY_TIME 1 //ms u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK phy_PathA_IQK_8192C( IN PADAPTER pAdapter, IN BOOLEAN configPathB ) { u4Byte regEAC, regE94, regE9C, regEA4; u1Byte result = 0x00; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); RTPRINT(FINIT, INIT_IQK, ("Path A IQK!\n")); //path-A IQK setting RTPRINT(FINIT, INIT_IQK, ("Path-A IQK setting!\n")); if(pAdapter->interfaceIndex == 0) { PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1f); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x10008c1f); } else { PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x10008c22); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x10008c22); } PHY_SetBBReg(pAdapter, rTx_IQK_PI_A, bMaskDWord, 0x82140102); PHY_SetBBReg(pAdapter, rRx_IQK_PI_A, bMaskDWord, configPathB ? 0x28160202 : IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)?0x28160202:0x28160502); //path-B IQK setting if(configPathB) { PHY_SetBBReg(pAdapter, rTx_IQK_Tone_B, bMaskDWord, 0x10008c22); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_B, bMaskDWord, 0x10008c22); PHY_SetBBReg(pAdapter, rTx_IQK_PI_B, bMaskDWord, 0x82140102); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rRx_IQK_PI_B, bMaskDWord, 0x28160206); else PHY_SetBBReg(pAdapter, rRx_IQK_PI_B, bMaskDWord, 0x28160202); } //LO calibration setting RTPRINT(FINIT, INIT_IQK, ("LO calibration setting!\n")); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rIQK_AGC_Rsp, bMaskDWord, 0x00462911); else PHY_SetBBReg(pAdapter, rIQK_AGC_Rsp, bMaskDWord, 0x001028d1); //One shot, path A LOK & IQK RTPRINT(FINIT, INIT_IQK, ("One shot, path A LOK & IQK!\n")); PHY_SetBBReg(pAdapter, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); PHY_SetBBReg(pAdapter, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); // delay x ms RTPRINT(FINIT, INIT_IQK, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME)); PlatformStallExecution(IQK_DELAY_TIME*1000); // Check failed regEAC = PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xeac = 0x%x\n", regEAC)); regE94 = PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xe94 = 0x%x\n", regE94)); regE9C= PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xe9c = 0x%x\n", regE9C)); regEA4= PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_A_2, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xea4 = 0x%x\n", regEA4)); if(!(regEAC & BIT28) && (((regE94 & 0x03FF0000)>>16) != 0x142) && (((regE9C & 0x03FF0000)>>16) != 0x42) ) result |= 0x01; else //if Tx not OK, ignore Rx return result; if(!(regEAC & BIT27) && //if Tx is OK, check whether Rx is OK (((regEA4 & 0x03FF0000)>>16) != 0x132) && (((regEAC & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else RTPRINT(FINIT, INIT_IQK, ("Path A Rx IQK fail!!\n")); return result; } u1Byte //bit0 = 1 => Tx OK, bit1 = 1 => Rx OK phy_PathB_IQK_8192C( IN PADAPTER pAdapter ) { u4Byte regEAC, regEB4, regEBC, regEC4, regECC; u1Byte result = 0x00; RTPRINT(FINIT, INIT_IQK, ("Path B IQK!\n")); //One shot, path B LOK & IQK RTPRINT(FINIT, INIT_IQK, ("One shot, path A LOK & IQK!\n")); PHY_SetBBReg(pAdapter, rIQK_AGC_Cont, bMaskDWord, 0x00000002); PHY_SetBBReg(pAdapter, rIQK_AGC_Cont, bMaskDWord, 0x00000000); // delay x ms RTPRINT(FINIT, INIT_IQK, ("Delay %d ms for One shot, path B LOK & IQK.\n", IQK_DELAY_TIME)); PlatformStallExecution(IQK_DELAY_TIME*1000); // Check failed regEAC = PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xeac = 0x%x\n", regEAC)); regEB4 = PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xeb4 = 0x%x\n", regEB4)); regEBC= PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xebc = 0x%x\n", regEBC)); regEC4= PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_B_2, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xec4 = 0x%x\n", regEC4)); regECC= PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_B_2, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("0xecc = 0x%x\n", regECC)); if(!(regEAC & BIT31) && (((regEB4 & 0x03FF0000)>>16) != 0x142) && (((regEBC & 0x03FF0000)>>16) != 0x42)) result |= 0x01; else return result; if(!(regEAC & BIT30) && (((regEC4 & 0x03FF0000)>>16) != 0x132) && (((regECC & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else RTPRINT(FINIT, INIT_IQK, ("Path B Rx IQK fail!!\n")); return result; } VOID phy_PathAFillIQKMatrix( IN PADAPTER pAdapter, IN BOOLEAN bIQKOK, IN s4Byte result[][8], IN u1Byte final_candidate, IN BOOLEAN bTxOnly ) { u4Byte Oldval_0, X, TX0_A, reg; s4Byte Y, TX0_C; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); RTPRINT(FINIT, INIT_IQK, ("Path A IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed")); if(final_candidate == 0xFF) return; else if(bIQKOK) { Oldval_0 = (PHY_QueryBBReg(pAdapter, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][0]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX0_A = (X * Oldval_0) >> 8; RTPRINT(FINIT, INIT_IQK, ("X = 0x%x, TX0_A = 0x%x, Oldval_0 0x%x\n", X, TX0_A, Oldval_0)); PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT24, ((X* Oldval_0>>7) & 0x1)); else PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(31), ((X* Oldval_0>>7) & 0x1)); Y = result[final_candidate][1]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; //path B IQK result + 3 if(pAdapter->interfaceIndex == 1 && pHalData->CurrentBandType == BAND_ON_5G) Y += 3; TX0_C = (Y * Oldval_0) >> 8; RTPRINT(FINIT, INIT_IQK, ("Y = 0x%x, TX = 0x%x\n", Y, TX0_C)); PHY_SetBBReg(pAdapter, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C&0x3C0)>>6)); PHY_SetBBReg(pAdapter, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C&0x3F)); if(IS_HARDWARE_TYPE_8192D(pAdapter)/*&&is2T*/) PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT26, ((Y* Oldval_0>>7) & 0x1)); else PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(29), ((Y* Oldval_0>>7) & 0x1)); if(bTxOnly) { RTPRINT(FINIT, INIT_IQK, ("phy_PathAFillIQKMatrix only Tx OK\n")); return; } reg = result[final_candidate][2]; PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0x3FF, reg); reg = result[final_candidate][3] & 0x3F; PHY_SetBBReg(pAdapter, rOFDM0_XARxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][3] >> 6) & 0xF; PHY_SetBBReg(pAdapter, rOFDM0_RxIQExtAnta, 0xF0000000, reg); } } VOID phy_PathBFillIQKMatrix( IN PADAPTER pAdapter, IN BOOLEAN bIQKOK, IN s4Byte result[][8], IN u1Byte final_candidate, IN BOOLEAN bTxOnly //do Tx only ) { u4Byte Oldval_1, X, TX1_A, reg; s4Byte Y, TX1_C; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); RTPRINT(FINIT, INIT_IQK, ("Path B IQ Calibration %s !\n",(bIQKOK)?"Success":"Failed")); if(final_candidate == 0xFF) return; else if(bIQKOK) { Oldval_1 = (PHY_QueryBBReg(pAdapter, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][4]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX1_A = (X * Oldval_1) >> 8; RTPRINT(FINIT, INIT_IQK, ("X = 0x%x, TX1_A = 0x%x\n", X, TX1_A)); PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT28, ((X* Oldval_1>>7) & 0x1)); else PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(27), ((X* Oldval_1>>7) & 0x1)); Y = result[final_candidate][5]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; if(pHalData->CurrentBandType == BAND_ON_5G) Y += 3; //temp modify for preformance TX1_C = (Y * Oldval_1) >> 8; RTPRINT(FINIT, INIT_IQK, ("Y = 0x%x, TX1_C = 0x%x\n", Y, TX1_C)); PHY_SetBBReg(pAdapter, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C&0x3C0)>>6)); PHY_SetBBReg(pAdapter, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C&0x3F)); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT30, ((Y* Oldval_1>>7) & 0x1)); else PHY_SetBBReg(pAdapter, rOFDM0_ECCAThreshold, BIT(25), ((Y* Oldval_1>>7) & 0x1)); if(bTxOnly) return; reg = result[final_candidate][6]; PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0x3FF, reg); reg = result[final_candidate][7] & 0x3F; PHY_SetBBReg(pAdapter, rOFDM0_XBRxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][7] >> 6) & 0xF; PHY_SetBBReg(pAdapter, rOFDM0_AGCRSSITable, 0x0000F000, reg); } } BOOLEAN phy_SimularityCompare_92C( IN PADAPTER pAdapter, IN s4Byte result[][8], IN u1Byte c1, IN u1Byte c2 ) { u4Byte i, j, diff, SimularityBitMap, bound = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u1Byte final_candidate[2] = {0xFF, 0xFF}; //for path A and path B BOOLEAN bResult = TRUE, is2T = IS_92C_SERIAL( pHalData->VersionID); if(is2T) bound = 8; else bound = 4; SimularityBitMap = 0; for( i = 0; i < bound; i++ ) { diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]); if (diff > MAX_TOLERANCE) { if((i == 2 || i == 6) && !SimularityBitMap) { if(result[c1][i]+result[c1][i+1] == 0) final_candidate[(i/4)] = c2; else if (result[c2][i]+result[c2][i+1] == 0) final_candidate[(i/4)] = c1; else SimularityBitMap = SimularityBitMap|(1< do IQK again */ BOOLEAN phy_SimularityCompare( IN PADAPTER pAdapter, IN s4Byte result[][8], IN u1Byte c1, IN u1Byte c2 ) { if(IS_HARDWARE_TYPE_8192D(pAdapter)) return phy_SimularityCompare_92D(pAdapter, result, c1, c2); else return phy_SimularityCompare_92C(pAdapter, result, c1, c2); } VOID phy_IQCalibrate_8192C( IN PADAPTER pAdapter, IN s4Byte result[][8], IN u1Byte t, IN BOOLEAN is2T ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u4Byte i; u1Byte PathAOK, PathBOK; u4Byte ADDA_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u4Byte IQK_MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG}; //since 92C & 92D have the different define in IQK_BB_REG u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD }; u4Byte IQK_BB_REG_92D[IQK_BB_REG_NUM_92D] = { //for normal rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rOFDM0_TRxPathEnable, rFPGA0_RFMOD, rFPGA0_AnalogParameter4, rOFDM0_XAAGCCore1, rOFDM0_XBAGCCore1 }; #if MP_DRIVER const u4Byte retryCount = 9; #else const u4Byte retryCount = 2; #endif //Neil Chen--2011--05--19-- //3 Path Div u1Byte rfPathSwitch=0x0; // Note: IQ calibration must be performed after loading // PHY_REG.txt , and radio_a, radio_b.txt u4Byte bbvalue; if(t==0) { bbvalue = PHY_QueryBBReg(pAdapter, rFPGA0_RFMOD, bMaskDWord); RTPRINT(FINIT, INIT_IQK, ("phy_IQCalibrate_8192C()==>0x%08x\n",bbvalue)); RTPRINT(FINIT, INIT_IQK, ("IQ Calibration for %s\n", (is2T ? "2T2R" : "1T1R"))); // Save ADDA parameters, turn Path A ADDA on phy_SaveADDARegisters(pAdapter, ADDA_REG, pHalData->ADDA_backup, IQK_ADDA_REG_NUM); phy_SaveMACRegisters(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup); if(IS_HARDWARE_TYPE_8192D(pAdapter)) phy_SaveADDARegisters(pAdapter, IQK_BB_REG_92D, pHalData->IQK_BB_backup, IQK_BB_REG_NUM_92D); else phy_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup, IQK_BB_REG_NUM); } phy_PathADDAOn(pAdapter, ADDA_REG, TRUE, is2T); if(IS_HARDWARE_TYPE_8192D(pAdapter)){ //============================== //3 Path Diversity ////Neil Chen--2011--05--20 rfPathSwitch =(u1Byte) (PHY_QueryBBReg(pAdapter, 0xB30, bMaskDWord)>>27); //rfPathSwitch = (u1Byte) DataB30; rfPathSwitch = rfPathSwitch&(0x01); if(rfPathSwitch) // Path Div On { phy_PathADDAOn(pAdapter, ADDA_REG, TRUE, is2T); //DbgPrint("=STEP= change ADDA Path from B to A Path\n"); } else { phy_PathADDAOn(pAdapter, ADDA_REG, FALSE, is2T); } //3 end //===================================== PHY_SetBBReg(pAdapter, rPdp_AntA, bMaskDWord, 0x01017038); } if(t==0) { pHalData->bRfPiEnable = (u1Byte)PHY_QueryBBReg(pAdapter, rFPGA0_XA_HSSIParameter1, BIT(8)); } if(!pHalData->bRfPiEnable){ // Switch BB to PI mode to do IQ Calibration. phy_PIModeSwitch(pAdapter, TRUE); } PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, BIT24, 0x00); PHY_SetBBReg(pAdapter, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600); PHY_SetBBReg(pAdapter, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4); PHY_SetBBReg(pAdapter, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000); if(IS_HARDWARE_TYPE_8192D(pAdapter)) PHY_SetBBReg(pAdapter, rFPGA0_AnalogParameter4, 0xf00000, 0x0f); else { PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0x01); PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0x00); PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0x00); } if(is2T) { PHY_SetBBReg(pAdapter, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000); PHY_SetBBReg(pAdapter, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000); } //MAC settings phy_MACSettingCalibration(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup); if(IS_HARDWARE_TYPE_8192D(pAdapter)) { PHY_SetBBReg(pAdapter, rConfig_AntA, bMaskDWord, 0x0f600000); if(is2T) { PHY_SetBBReg(pAdapter, rConfig_AntB, bMaskDWord, 0x0f600000); } } else { //Page B init PHY_SetBBReg(pAdapter, rConfig_AntA, bMaskDWord, 0x00080000); if(is2T) { PHY_SetBBReg(pAdapter, rConfig_AntB, bMaskDWord, 0x00080000); } } // IQ calibration setting RTPRINT(FINIT, INIT_IQK, ("IQK setting!\n")); PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x80800000); PHY_SetBBReg(pAdapter, rTx_IQK, bMaskDWord, 0x01007c00); PHY_SetBBReg(pAdapter, rRx_IQK, bMaskDWord, 0x01004800); for(i = 0 ; i < retryCount ; i++){ PathAOK = phy_PathA_IQK_8192C(pAdapter, is2T); if(PathAOK == 0x03){ RTPRINT(FINIT, INIT_IQK, ("Path A IQK Success!!\n")); result[t][0] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16; result[t][1] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16; result[t][2] = (PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_A_2, bMaskDWord)&0x3FF0000)>>16; result[t][3] = (PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_A_2, bMaskDWord)&0x3FF0000)>>16; break; } else if (i == (retryCount-1) && PathAOK == 0x01) //Tx IQK OK { RTPRINT(FINIT, INIT_IQK, ("Path A IQK Only Tx Success!!\n")); result[t][0] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16; result[t][1] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16; } } if(0x00 == PathAOK){ RTPRINT(FINIT, INIT_IQK, ("Path A IQK failed!!\n")); } if(is2T){ phy_PathAStandBy(pAdapter); // Turn Path B ADDA on phy_PathADDAOn(pAdapter, ADDA_REG, FALSE, is2T); for(i = 0 ; i < retryCount ; i++){ PathBOK = phy_PathB_IQK_8192C(pAdapter); if(PathBOK == 0x03){ RTPRINT(FINIT, INIT_IQK, ("Path B IQK Success!!\n")); result[t][4] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][5] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][6] = (PHY_QueryBBReg(pAdapter, rRx_Power_Before_IQK_B_2, bMaskDWord)&0x3FF0000)>>16; result[t][7] = (PHY_QueryBBReg(pAdapter, rRx_Power_After_IQK_B_2, bMaskDWord)&0x3FF0000)>>16; break; } else if (i == (retryCount - 1) && PathBOK == 0x01) //Tx IQK OK { RTPRINT(FINIT, INIT_IQK, ("Path B Only Tx IQK Success!!\n")); result[t][4] = (PHY_QueryBBReg(pAdapter, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][5] = (PHY_QueryBBReg(pAdapter, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16; } } if(0x00 == PathBOK){ RTPRINT(FINIT, INIT_IQK, ("Path B IQK failed!!\n")); } } //Back to BB mode, load original value RTPRINT(FINIT, INIT_IQK, ("IQK:Back to BB mode, load original value!\n")); PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0); if(t!=0) { if(!pHalData->bRfPiEnable){ // Switch back BB to SI mode after finish IQ Calibration. phy_PIModeSwitch(pAdapter, FALSE); } // Reload ADDA power saving parameters phy_ReloadADDARegisters(pAdapter, ADDA_REG, pHalData->ADDA_backup, IQK_ADDA_REG_NUM); // Reload MAC parameters phy_ReloadMACRegisters(pAdapter, IQK_MAC_REG, pHalData->IQK_MAC_backup); // Reload BB parameters if(IS_HARDWARE_TYPE_8192D(pAdapter)) { if(is2T) phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92D, pHalData->IQK_BB_backup, IQK_BB_REG_NUM_92D); else phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92D, pHalData->IQK_BB_backup, IQK_BB_REG_NUM_92D -1); } else phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup, IQK_BB_REG_NUM); if(!IS_HARDWARE_TYPE_8192D(pAdapter)) { // Restore RX initial gain PHY_SetBBReg(pAdapter, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3); if(is2T){ PHY_SetBBReg(pAdapter, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3); } } //load 0xe30 IQC default value PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00); } RTPRINT(FINIT, INIT_IQK, ("phy_IQCalibrate_8192C() <==\n")); } VOID phy_LCCalibrate92C( IN PADAPTER pAdapter, IN BOOLEAN is2T ) { u1Byte tmpReg; u4Byte RF_Amode=0, RF_Bmode=0, LC_Cal; // HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); //Check continuous TX and Packet TX tmpReg = PlatformEFIORead1Byte(pAdapter, 0xd03); if((tmpReg&0x70) != 0) //Deal with contisuous TX case PlatformEFIOWrite1Byte(pAdapter, 0xd03, tmpReg&0x8F); //disable all continuous TX else // Deal with Packet TX case PlatformEFIOWrite1Byte(pAdapter, REG_TXPAUSE, 0xFF); // block all queues if((tmpReg&0x70) != 0) { //1. Read original RF mode //Path-A RF_Amode = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits); //Path-B if(is2T) RF_Bmode = PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits); //2. Set RF mode = standby mode //Path-A PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode&0x8FFFF)|0x10000); //Path-B if(is2T) PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode&0x8FFFF)|0x10000); } //3. Read RF reg18 LC_Cal = PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits); //4. Set LC calibration begin bit15 PHY_SetRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal|0x08000); delay_ms(100); //Restore original situation if((tmpReg&0x70) != 0) //Deal with contisuous TX case { //Path-A PlatformEFIOWrite1Byte(pAdapter, 0xd03, tmpReg); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode); //Path-B if(is2T) PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode); } else // Deal with Packet TX case { PlatformEFIOWrite1Byte(pAdapter, REG_TXPAUSE, 0x00); } } VOID phy_LCCalibrate( IN PADAPTER pAdapter, IN BOOLEAN is2T ) { if(IS_HARDWARE_TYPE_8192D(pAdapter)) { #if SWLCK == 1 phy_LCCalibrate92DSW(pAdapter, is2T); #else phy_LCCalibrate92D(pAdapter, is2T); #endif } else { phy_LCCalibrate92C(pAdapter, is2T); } } //Analog Pre-distortion calibration #define APK_BB_REG_NUM 8 #define APK_CURVE_REG_NUM 4 #define PATH_NUM 2 VOID phy_APCalibrate_8192C( IN PADAPTER pAdapter, IN s1Byte delta, IN BOOLEAN is2T ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u4Byte regD[PATH_NUM]; u4Byte tmpReg, index, offset, i, apkbound; u1Byte path, pathbound = PATH_NUM; u4Byte BB_backup[APK_BB_REG_NUM]; u4Byte BB_REG[APK_BB_REG_NUM] = { rFPGA1_TxBlock, rOFDM0_TRxPathEnable, rFPGA0_RFMOD, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE }; u4Byte BB_AP_MODE[APK_BB_REG_NUM] = { 0x00000020, 0x00a05430, 0x02040000, 0x000800e4, 0x00204000 }; u4Byte BB_normal_AP_MODE[APK_BB_REG_NUM] = { 0x00000020, 0x00a05430, 0x02040000, 0x000800e4, 0x22204000 }; u4Byte AFE_backup[IQK_ADDA_REG_NUM]; u4Byte AFE_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u4Byte MAC_backup[IQK_MAC_REG_NUM]; u4Byte MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG}; u4Byte APK_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = { {0x0852c, 0x1852c, 0x5852c, 0x1852c, 0x5852c}, {0x2852e, 0x0852e, 0x3852e, 0x0852e, 0x0852e} }; u4Byte APK_normal_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = { {0x0852c, 0x0a52c, 0x3a52c, 0x5a52c, 0x5a52c}, //path settings equal to path b settings {0x0852c, 0x0a52c, 0x5a52c, 0x5a52c, 0x5a52c} }; u4Byte APK_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = { {0x52019, 0x52014, 0x52013, 0x5200f, 0x5208d}, {0x5201a, 0x52019, 0x52016, 0x52033, 0x52050} }; u4Byte APK_normal_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = { {0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}, //path settings equal to path b settings {0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a} }; #if 0 u4Byte APK_RF_value_A[PATH_NUM][APK_BB_REG_NUM] = { {0x1adb0, 0x1adb0, 0x1ada0, 0x1ad90, 0x1ad80}, {0x00fb0, 0x00fb0, 0x00fa0, 0x00f90, 0x00f80} }; #endif u4Byte AFE_on_off[PATH_NUM] = { 0x04db25a4, 0x0b1b25a4}; //path A on path B off / path A off path B on u4Byte APK_offset[PATH_NUM] = { rConfig_AntA, rConfig_AntB}; u4Byte APK_normal_offset[PATH_NUM] = { rConfig_Pmpd_AntA, rConfig_Pmpd_AntB}; u4Byte APK_value[PATH_NUM] = { 0x92fc0000, 0x12fc0000}; u4Byte APK_normal_value[PATH_NUM] = { 0x92680000, 0x12680000}; s1Byte APK_delta_mapping[APK_BB_REG_NUM][13] = { {-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-6, -4, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-11, -9, -7, -5, -3, -1, 0, 0, 0, 0, 0, 0, 0} }; u4Byte APK_normal_setting_value_1[13] = { 0x01017018, 0xf7ed8f84, 0x1b1a1816, 0x2522201e, 0x322e2b28, 0x433f3a36, 0x5b544e49, 0x7b726a62, 0xa69a8f84, 0xdfcfc0b3, 0x12680000, 0x00880000, 0x00880000 }; u4Byte APK_normal_setting_value_2[16] = { 0x01c7021d, 0x01670183, 0x01000123, 0x00bf00e2, 0x008d00a3, 0x0068007b, 0x004d0059, 0x003a0042, 0x002b0031, 0x001f0025, 0x0017001b, 0x00110014, 0x000c000f, 0x0009000b, 0x00070008, 0x00050006 }; u4Byte APK_result[PATH_NUM][APK_BB_REG_NUM]; //val_1_1a, val_1_2a, val_2a, val_3a, val_4a // u4Byte AP_curve[PATH_NUM][APK_CURVE_REG_NUM]; s4Byte BB_offset, delta_V, delta_offset; #if MP_DRIVER == 1 PMPT_CONTEXT pMptCtx = &(pAdapter->MptCtx); pMptCtx->APK_bound[0] = 45; pMptCtx->APK_bound[1] = 52; #endif RTPRINT(FINIT, INIT_IQK, ("==>phy_APCalibrate_8192C() delta %d\n", delta)); RTPRINT(FINIT, INIT_IQK, ("AP Calibration for %s\n", (is2T ? "2T2R" : "1T1R"))); if(!is2T) pathbound = 1; //2 FOR NORMAL CHIP SETTINGS // Temporarily do not allow normal driver to do the following settings because these offset // and value will cause RF internal PA to be unpredictably disabled by HW, such that RF Tx signal // will disappear after disable/enable card many times on 88CU. RF SD and DD have not find the // root cause, so we remove these actions temporarily. Added by tynli and SD3 Allen. 2010.05.31. #if MP_DRIVER != 1 return; #endif //settings adjust for normal chip for(index = 0; index < PATH_NUM; index ++) { APK_offset[index] = APK_normal_offset[index]; APK_value[index] = APK_normal_value[index]; AFE_on_off[index] = 0x6fdb25a4; } for(index = 0; index < APK_BB_REG_NUM; index ++) { for(path = 0; path < pathbound; path++) { APK_RF_init_value[path][index] = APK_normal_RF_init_value[path][index]; APK_RF_value_0[path][index] = APK_normal_RF_value_0[path][index]; } BB_AP_MODE[index] = BB_normal_AP_MODE[index]; } apkbound = 6; //save BB default value for(index = 0; index < APK_BB_REG_NUM ; index++) { if(index == 0) //skip continue; BB_backup[index] = PHY_QueryBBReg(pAdapter, BB_REG[index], bMaskDWord); } //save MAC default value phy_SaveMACRegisters(pAdapter, MAC_REG, MAC_backup); //save AFE default value phy_SaveADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM); for(path = 0; path < pathbound; path++) { if(path == RF_PATH_A) { //path A APK //load APK setting //path-A offset = rPdp_AntA; for(index = 0; index < 11; index ++) { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000); offset = rConfig_AntA; for(; index < 13; index ++) { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } //page-B1 PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x40000000); //path A offset = rPdp_AntA; for(index = 0; index < 16; index++) { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_2[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x00000000); } else if(path == RF_PATH_B) { //path B APK //load APK setting //path-B offset = rPdp_AntB; for(index = 0; index < 10; index ++) { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntA, bMaskDWord, 0x12680000); PHY_SetBBReg(pAdapter, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000); offset = rConfig_AntA; index = 11; for(; index < 13; index ++) //offset 0xb68, 0xb6c { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_1[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } //page-B1 PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x40000000); //path B offset = 0xb60; for(index = 0; index < 16; index++) { PHY_SetBBReg(pAdapter, offset, bMaskDWord, APK_normal_setting_value_2[index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", offset, PHY_QueryBBReg(pAdapter, offset, bMaskDWord))); offset += 0x04; } PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x00000000); } //save RF default value regD[path] = PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask); //Path A AFE all on, path B AFE All off or vise versa for(index = 0; index < IQK_ADDA_REG_NUM ; index++) PHY_SetBBReg(pAdapter, AFE_REG[index], bMaskDWord, AFE_on_off[path]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xe70 %x\n", PHY_QueryBBReg(pAdapter, rRx_Wait_CCA, bMaskDWord))); //BB to AP mode if(path == 0) { for(index = 0; index < APK_BB_REG_NUM ; index++) { if(index == 0) //skip continue; else if (index < 5) PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_AP_MODE[index]); else if (BB_REG[index] == 0x870) PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_backup[index]|BIT10|BIT26); else PHY_SetBBReg(pAdapter, BB_REG[index], BIT10, 0x0); } PHY_SetBBReg(pAdapter, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00); } else //path B { PHY_SetBBReg(pAdapter, rTx_IQK_Tone_B, bMaskDWord, 0x01008c00); PHY_SetBBReg(pAdapter, rRx_IQK_Tone_B, bMaskDWord, 0x01008c00); } RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x800 %x\n", PHY_QueryBBReg(pAdapter, 0x800, bMaskDWord))); //MAC settings phy_MACSettingCalibration(pAdapter, MAC_REG, MAC_backup); if(path == RF_PATH_A) //Path B to standby mode { PHY_SetRFReg(pAdapter, RF_PATH_B, RF_AC, bRFRegOffsetMask, 0x10000); } else //Path A to standby mode { PHY_SetRFReg(pAdapter, RF_PATH_A, RF_AC, bRFRegOffsetMask, 0x10000); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE1, bRFRegOffsetMask, 0x1000f); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE2, bRFRegOffsetMask, 0x20103); } delta_offset = ((delta+14)/2); if(delta_offset < 0) delta_offset = 0; else if (delta_offset > 12) delta_offset = 12; //AP calibration for(index = 0; index < APK_BB_REG_NUM; index++) { if(index != 1) //only DO PA11+PAD01001, AP RF setting continue; tmpReg = APK_RF_init_value[path][index]; #if 1 if(!pHalData->bAPKThermalMeterIgnore) { BB_offset = (tmpReg & 0xF0000) >> 16; if(!(tmpReg & BIT15)) //sign bit 0 { BB_offset = -BB_offset; } delta_V = APK_delta_mapping[index][delta_offset]; BB_offset += delta_V; RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() APK index %d tmpReg 0x%x delta_V %d delta_offset %d\n", index, tmpReg, delta_V, delta_offset)); if(BB_offset < 0) { tmpReg = tmpReg & (~BIT15); BB_offset = -BB_offset; } else { tmpReg = tmpReg | BIT15; } tmpReg = (tmpReg & 0xFFF0FFFF) | (BB_offset << 16); } #endif #if DEV_BUS_TYPE==RT_PCI_INTERFACE if(IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)) PHY_SetRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask, 0x894ae); else #endif PHY_SetRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask, 0x8992e); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xc %x\n", PHY_QueryRFReg(pAdapter, path, RF_IPA_A, bRFRegOffsetMask))); PHY_SetRFReg(pAdapter, path, RF_AC, bRFRegOffsetMask, APK_RF_value_0[path][index]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x0 %x\n", PHY_QueryRFReg(pAdapter, path, RF_AC, bRFRegOffsetMask))); PHY_SetRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask, tmpReg); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xd %x\n", PHY_QueryRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask))); // PA11+PAD01111, one shot i = 0; do { PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x80000000); { PHY_SetBBReg(pAdapter, APK_offset[path], bMaskDWord, APK_value[0]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", APK_offset[path], PHY_QueryBBReg(pAdapter, APK_offset[path], bMaskDWord))); delay_ms(3); PHY_SetBBReg(pAdapter, APK_offset[path], bMaskDWord, APK_value[1]); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0x%x value 0x%x\n", APK_offset[path], PHY_QueryBBReg(pAdapter, APK_offset[path], bMaskDWord))); delay_ms(20); } PHY_SetBBReg(pAdapter, rFPGA0_IQK, bMaskDWord, 0x00000000); if(path == RF_PATH_A) tmpReg = PHY_QueryBBReg(pAdapter, rAPK, 0x03E00000); else tmpReg = PHY_QueryBBReg(pAdapter, rAPK, 0xF8000000); RTPRINT(FINIT, INIT_IQK, ("phy_APCalibrate_8192C() offset 0xbd8[25:21] %x\n", tmpReg)); i++; } while(tmpReg > apkbound && i < 4); APK_result[path][index] = tmpReg; } } //reload MAC default value phy_ReloadMACRegisters(pAdapter, MAC_REG, MAC_backup); //reload BB default value for(index = 0; index < APK_BB_REG_NUM ; index++) { if(index == 0) //skip continue; PHY_SetBBReg(pAdapter, BB_REG[index], bMaskDWord, BB_backup[index]); } //reload AFE default value phy_ReloadADDARegisters(pAdapter, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM); //reload RF path default value for(path = 0; path < pathbound; path++) { PHY_SetRFReg(pAdapter, path, RF_TXBIAS_A, bRFRegOffsetMask, regD[path]); if(path == RF_PATH_B) { PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE1, bRFRegOffsetMask, 0x1000f); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_MODE2, bRFRegOffsetMask, 0x20101); } //note no index == 0 if (APK_result[path][1] > 6) APK_result[path][1] = 6; RTPRINT(FINIT, INIT_IQK, ("apk path %d result %d 0x%x \t", path, 1, APK_result[path][1])); } RTPRINT(FINIT, INIT_IQK, ("\n")); for(path = 0; path < pathbound; path++) { PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G1_G4, bRFRegOffsetMask, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (APK_result[path][1] << 5) | APK_result[path][1])); if(path == RF_PATH_A) PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G5_G8, bRFRegOffsetMask, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x00 << 5) | 0x05)); else PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G5_G8, bRFRegOffsetMask, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x02 << 5) | 0x05)); if(!IS_HARDWARE_TYPE_8723A(pAdapter)) PHY_SetRFReg(pAdapter, path, RF_BS_PA_APSET_G9_G11, bRFRegOffsetMask, ((0x08 << 15) | (0x08 << 10) | (0x08 << 5) | 0x08)); } pHalData->bAPKdone = TRUE; RTPRINT(FINIT, INIT_IQK, ("<==phy_APCalibrate_8192C()\n")); } VOID PHY_IQCalibrate_8192C( IN PADAPTER pAdapter, IN BOOLEAN bReCovery ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); s4Byte result[4][8]; //last is final result u1Byte i, final_candidate, Indexforchannel; BOOLEAN bPathAOK, bPathBOK; s4Byte RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC, RegTmp = 0; BOOLEAN is12simular, is13simular, is23simular; BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE; u4Byte IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance, rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable, rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance, rOFDM0_XCTxAFE, rOFDM0_XDTxAFE, rOFDM0_RxIQExtAnta}; if (ODM_CheckPowerStatus(pAdapter) == FALSE) return; #if MP_DRIVER == 1 bStartContTx = pAdapter->MptCtx.bStartContTx; bSingleTone = pAdapter->MptCtx.bSingleTone; bCarrierSuppression = pAdapter->MptCtx.bCarrierSuppression; #endif //ignore IQK when continuous Tx if(bStartContTx || bSingleTone || bCarrierSuppression) return; #if DISABLE_BB_RF return; #endif if(pAdapter->bSlaveOfDMSP) return; if(!IS_HARDWARE_TYPE_8192D(pAdapter)) { if(bReCovery) { phy_ReloadADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup_recover, 9); return; } } RTPRINT(FINIT, INIT_IQK, ("IQK:Start!!!\n")); for(i = 0; i < 8; i++) { result[0][i] = 0; result[1][i] = 0; result[2][i] = 0; result[3][i] = 0; } final_candidate = 0xff; bPathAOK = FALSE; bPathBOK = FALSE; is12simular = FALSE; is23simular = FALSE; is13simular = FALSE; RTPRINT(FINIT, INIT_IQK, ("IQK !!!interface %d currentband %d ishardwareD %d \n", pAdapter->interfaceIndex, pHalData->CurrentBandType, IS_HARDWARE_TYPE_8192D(pAdapter))); AcquireCCKAndRWPageAControl(pAdapter); // RT_TRACE(COMP_INIT,DBG_LOUD,("Acquire Mutex in IQCalibrate \n")); for (i=0; i<3; i++) { // if(IS_HARDWARE_TYPE_8192C(pAdapter) || IS_HARDWARE_TYPE_8723A(pAdapter)) if(!IS_HARDWARE_TYPE_8192D(pAdapter)) { if(IS_92C_SERIAL( pHalData->VersionID)) { phy_IQCalibrate_8192C(pAdapter, result, i, TRUE); } else { // For 88C 1T1R phy_IQCalibrate_8192C(pAdapter, result, i, FALSE); } } else/* if(IS_HARDWARE_TYPE_8192D(pAdapter))*/ { if(pHalData->CurrentBandType == BAND_ON_5G) { phy_IQCalibrate_5G_Normal(pAdapter, result, i); } else if(pHalData->CurrentBandType == BAND_ON_2_4G) { if(IS_92D_SINGLEPHY(pHalData->VersionID)) phy_IQCalibrate_8192C(pAdapter, result, i, TRUE); else phy_IQCalibrate_8192C(pAdapter, result, i, FALSE); } } if(i == 1) { is12simular = phy_SimularityCompare(pAdapter, result, 0, 1); if(is12simular) { final_candidate = 0; break; } } if(i == 2) { is13simular = phy_SimularityCompare(pAdapter, result, 0, 2); if(is13simular) { final_candidate = 0; break; } is23simular = phy_SimularityCompare(pAdapter, result, 1, 2); if(is23simular) final_candidate = 1; else { for(i = 0; i < 8; i++) RegTmp += result[3][i]; if(RegTmp != 0) final_candidate = 3; else final_candidate = 0xFF; } } } // RT_TRACE(COMP_INIT,DBG_LOUD,("Release Mutex in IQCalibrate \n")); ReleaseCCKAndRWPageAControl(pAdapter); for (i=0; i<4; i++) { RegE94 = result[i][0]; RegE9C = result[i][1]; RegEA4 = result[i][2]; RegEAC = result[i][3]; RegEB4 = result[i][4]; RegEBC = result[i][5]; RegEC4 = result[i][6]; RegECC = result[i][7]; RTPRINT(FINIT, INIT_IQK, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC)); } if(final_candidate != 0xff) { pHalData->RegE94 = RegE94 = result[final_candidate][0]; pHalData->RegE9C = RegE9C = result[final_candidate][1]; RegEA4 = result[final_candidate][2]; RegEAC = result[final_candidate][3]; pHalData->RegEB4 = RegEB4 = result[final_candidate][4]; pHalData->RegEBC = RegEBC = result[final_candidate][5]; RegEC4 = result[final_candidate][6]; RegECC = result[final_candidate][7]; RTPRINT(FINIT, INIT_IQK, ("IQK: final_candidate is %x\n",final_candidate)); RTPRINT(FINIT, INIT_IQK, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n ", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC)); bPathAOK = bPathBOK = TRUE; } else { RegE94 = RegEB4 = pHalData->RegE94 = pHalData->RegEB4 = 0x100; //X default value RegE9C = RegEBC = pHalData->RegE9C = pHalData->RegEBC = 0x0; //Y default value } if((RegE94 != 0)/*&&(RegEA4 != 0)*/) { if(pHalData->CurrentBandType == BAND_ON_5G) phy_PathAFillIQKMatrix_5G_Normal(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0)); else phy_PathAFillIQKMatrix(pAdapter, bPathAOK, result, final_candidate, (RegEA4 == 0)); } if (IS_92C_SERIAL(pHalData->VersionID) || IS_92D_SINGLEPHY(pHalData->VersionID)) { if((RegEB4 != 0)/*&&(RegEC4 != 0)*/) { if(pHalData->CurrentBandType == BAND_ON_5G) phy_PathBFillIQKMatrix_5G_Normal(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0)); else phy_PathBFillIQKMatrix(pAdapter, bPathBOK, result, final_candidate, (RegEC4 == 0)); } } if(IS_HARDWARE_TYPE_8192D(pAdapter) && final_candidate != 0xFF) { Indexforchannel = GetRightChnlPlaceforIQK(pHalData->CurrentChannel); for(i = 0; i < IQK_Matrix_REG_NUM; i++) pHalData->IQKMatrixRegSetting[Indexforchannel].Value[0][i] = result[final_candidate][i]; pHalData->IQKMatrixRegSetting[Indexforchannel].bIQKDone = TRUE; RTPRINT(FINIT, INIT_IQK, ("\nIQK OK Indexforchannel %d.\n", Indexforchannel)); } if(!IS_HARDWARE_TYPE_8192D(pAdapter)) phy_SaveADDARegisters(pAdapter, IQK_BB_REG_92C, pHalData->IQK_BB_backup_recover, 9); } VOID PHY_LCCalibrate_8192C( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); BOOLEAN bStartContTx = FALSE, bSingleTone = FALSE, bCarrierSuppression = FALSE; PMGNT_INFO pMgntInfo=&pAdapter->MgntInfo; PMGNT_INFO pMgntInfoBuddyAdapter; u4Byte timeout = 2000, timecount = 0; PADAPTER BuddyAdapter = pAdapter->BuddyAdapter; #if MP_DRIVER == 1 bStartContTx = pAdapter->MptCtx.bStartContTx; bSingleTone = pAdapter->MptCtx.bSingleTone; bCarrierSuppression = pAdapter->MptCtx.bCarrierSuppression; #endif #if DISABLE_BB_RF return; #endif //ignore LCK when continuous Tx if(bStartContTx || bSingleTone || bCarrierSuppression) return; if(BuddyAdapter != NULL && ((pAdapter->interfaceIndex == 0 && pHalData->CurrentBandType == BAND_ON_2_4G) || (pAdapter->interfaceIndex == 1 && pHalData->CurrentBandType == BAND_ON_5G))) { pMgntInfoBuddyAdapter=&BuddyAdapter->MgntInfo; while(pMgntInfoBuddyAdapter->bScanInProgress && timecount < timeout) { delay_ms(50); timecount += 50; } } while(pMgntInfo->bScanInProgress && timecount < timeout) { delay_ms(50); timecount += 50; } pHalData->bLCKInProgress = TRUE; RTPRINT(FINIT, INIT_IQK, ("LCK:Start!!!interface %d currentband %x delay %d ms\n", pAdapter->interfaceIndex, pHalData->CurrentBandType, timecount)); //if(IS_92C_SERIAL(pHalData->VersionID) || IS_92D_SINGLEPHY(pHalData->VersionID)) if(IS_2T2R(pHalData->VersionID)) { phy_LCCalibrate(pAdapter, TRUE); } else{ // For 88C 1T1R phy_LCCalibrate(pAdapter, FALSE); } pHalData->bLCKInProgress = FALSE; RTPRINT(FINIT, INIT_IQK, ("LCK:Finish!!!interface %d\n", pAdapter->interfaceIndex)); } VOID PHY_APCalibrate_8192C( IN PADAPTER pAdapter, IN s1Byte delta ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); //default disable APK, because Tx NG issue, suggest by Jenyu, 2011.11.25 return; #if DISABLE_BB_RF return; #endif if(IS_HARDWARE_TYPE_8192D(pAdapter) || IS_HARDWARE_TYPE_8723A(pAdapter)) return; #if FOR_BRAZIL_PRETEST != 1 if(pHalData->bAPKdone) #endif return; if(IS_92C_SERIAL( pHalData->VersionID)){ phy_APCalibrate_8192C(pAdapter, delta, TRUE); } else{ // For 88C 1T1R phy_APCalibrate_8192C(pAdapter, delta, FALSE); } } #endif //3============================================================ //3 IQ Calibration //3============================================================ VOID ODM_ResetIQKResult( IN PDM_ODM_T pDM_Odm ) { u1Byte i; #if (DM_ODM_SUPPORT_TYPE == ODM_MP || DM_ODM_SUPPORT_TYPE == ODM_CE) PADAPTER Adapter = pDM_Odm->Adapter; if (!IS_HARDWARE_TYPE_8192D(Adapter)) return; #endif ODM_RT_TRACE(pDM_Odm,ODM_COMP_CALIBRATION, ODM_DBG_LOUD,("PHY_ResetIQKResult:: settings regs %d default regs %d\n", sizeof(pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting)/sizeof(IQK_MATRIX_REGS_SETTING), IQK_Matrix_Settings_NUM)); //0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc for(i = 0; i < IQK_Matrix_Settings_NUM; i++) { { pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][0] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][2] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][4] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][6] = 0x100; pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][1] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][3] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][5] = pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].Value[0][7] = 0x0; pDM_Odm->RFCalibrateInfo.IQKMatrixRegSetting[i].bIQKDone = FALSE; } } } #if 1//!(DM_ODM_SUPPORT_TYPE & ODM_AP) u1Byte ODM_GetRightChnlPlaceforIQK(u1Byte chnl) { u1Byte channel_all[ODM_TARGET_CHNL_NUM_2G_5G] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,149,151,153,155,157,159,161,163,165}; u1Byte place = chnl; if(chnl > 14) { for(place = 14; place