/* * RDC R6040 Fast Ethernet MAC support * * Copyright (C) 2004 Sten Wang * Copyright (C) 2007 * Daniel Gimpelevich * Florian Fainelli * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "r6040" #define DRV_VERSION "0.19" #define DRV_RELDATE "16Jun2008" /* define bits of a debug mask */ #define DBG_PHY 0x00000001 /*!< show PHY read/write */ #define DBG_FREE_BUFS 0x00000002 /*!< show calls to r6040_free_*bufs */ #define DBG_RING 0x00000004 /*!< debug init./freeing of descr rings */ #define DBG_RX_BUF 0x00000008 /*!< show alloc. of new rx buf (in IRQ context !) */ #define DBG_TX_BUF 0x00000010 /*!< show arrival of new tx buf */ #define DBG_TX_DONE 0x00000020 /*!< debug TX done */ #define DBG_RX_DESCR 0x00000040 /*!< debug rx descr to be processed */ #define DBG_RX_DATA 0x00000080 /*!< show some user data of incoming packet */ #define DBG_EXIT 0x00000100 /*!< show exit code calls */ #define DBG_INIT 0x00000200 /*!< show init. code calls */ #define DBG_TX_RING_DUMP 0x00000400 /*!< dump the tx ring after creation */ #define DBG_RX_RING_DUMP 0x00000800 /*!< dump the rx ring after creation */ #define DBG_TX_DESCR 0x00001000 /*!< dump the setting of a descr for tx */ #define DBG_TX_DATA 0x00002000 /*!< dump some tx data */ #define DBG_IRQ 0x00004000 /*!< print inside the irq handler */ #define DBG_POLL 0x00008000 /*!< dump info on poll procedure */ #define DBG_MAC_ADDR 0x00010000 /*!< debug mac address setting */ #define DBG_OPEN 0x00020000 /*!< debug open proc. */ static int debug = 0; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "debug mask (-1 for all)"); /* define which debugs are left in the code during compilation */ #define DEBUG (-1) /* all debugs */ #define dbg(l, f, ...) \ do { \ if ((DEBUG & l) && (debug & l)) { \ printk(KERN_INFO DRV_NAME " %s: " f, __FUNCTION__, ## __VA_ARGS__); \ } \ } while (0) #define err(f, ...) printk(KERN_WARNING DRV_NAME " %s: " f, __FUNCTION__, ## __VA_ARGS__) /* PHY CHIP Address */ #define PHY1_ADDR 1 /* For MAC1 */ #define PHY2_ADDR 3 /* For MAC2 */ #define PHY_MODE 0x3100 /* PHY CHIP Register 0 */ #define PHY_CAP 0x01E1 /* PHY CHIP Register 4 */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6000 * HZ / 1000) /* RDC MAC I/O Size */ #define R6040_IO_SIZE 256 /* MAX RDC MAC */ #define MAX_MAC 2 /* MAC registers */ #define MCR0 0x00 /* Control register 0 */ #define MCR1 0x04 /* Control register 1 */ #define MAC_RST 0x0001 /* Reset the MAC */ #define MBCR 0x08 /* Bus control */ #define MT_ICR 0x0C /* TX interrupt control */ #define MR_ICR 0x10 /* RX interrupt control */ #define MTPR 0x14 /* TX poll command register */ #define MR_BSR 0x18 /* RX buffer size */ #define MR_DCR 0x1A /* RX descriptor control */ #define MLSR 0x1C /* Last status */ #define MMDIO 0x20 /* MDIO control register */ #define MDIO_WRITE 0x4000 /* MDIO write */ #define MDIO_READ 0x2000 /* MDIO read */ #define MMRD 0x24 /* MDIO read data register */ #define MMWD 0x28 /* MDIO write data register */ #define MTD_SA0 0x2C /* TX descriptor start address 0 */ #define MTD_SA1 0x30 /* TX descriptor start address 1 */ #define MRD_SA0 0x34 /* RX descriptor start address 0 */ #define MRD_SA1 0x38 /* RX descriptor start address 1 */ #define MISR 0x3C /* Status register */ #define MIER 0x40 /* INT enable register */ #define MSK_INT 0x0000 /* Mask off interrupts */ #define RX_FINISH 0x0001 /* rx finished irq */ #define RX_NO_DESC 0x0002 /* rx no descr. avail. irq */ #define RX_FIFO_FULL 0x0004 /* rx fifo full irq */ #define RX_EARLY 0x0008 /* rx early irq */ #define TX_FINISH 0x0010 /* tx finished irq */ #define TX_EARLY 0x0080 /* tx early irq */ #define EVENT_OVRFL 0x0100 /* event counter overflow irq */ #define LINK_CHANGED 0x0200 /* PHY link changed irq */ #define ME_CISR 0x44 /* Event counter INT status */ #define ME_CIER 0x48 /* Event counter INT enable */ #define MR_CNT 0x50 /* Successfully received packet counter */ #define ME_CNT0 0x52 /* Event counter 0 */ #define ME_CNT1 0x54 /* Event counter 1 */ #define ME_CNT2 0x56 /* Event counter 2 */ #define ME_CNT3 0x58 /* Event counter 3 */ #define MT_CNT 0x5A /* Successfully transmit packet counter */ #define ME_CNT4 0x5C /* Event counter 4 */ #define MP_CNT 0x5E /* Pause frame counter register */ #define MAR0 0x60 /* Hash table 0 */ #define MAR1 0x62 /* Hash table 1 */ #define MAR2 0x64 /* Hash table 2 */ #define MAR3 0x66 /* Hash table 3 */ #define MID_0L 0x68 /* Multicast address MID0 Low */ #define MID_0M 0x6A /* Multicast address MID0 Medium */ #define MID_0H 0x6C /* Multicast address MID0 High */ #define MID_1L 0x70 /* MID1 Low */ #define MID_1M 0x72 /* MID1 Medium */ #define MID_1H 0x74 /* MID1 High */ #define MID_2L 0x78 /* MID2 Low */ #define MID_2M 0x7A /* MID2 Medium */ #define MID_2H 0x7C /* MID2 High */ #define MID_3L 0x80 /* MID3 Low */ #define MID_3M 0x82 /* MID3 Medium */ #define MID_3H 0x84 /* MID3 High */ #define PHY_CC 0x88 /* PHY status change configuration register */ #define PHY_ST 0x8A /* PHY status register */ #define MAC_SM 0xAC /* MAC status machine */ #define MAC_ID 0xBE /* Identifier register */ #define TX_DCNT 0x80 /* TX descriptor count */ #define RX_DCNT 0x80 /* RX descriptor count */ #define MAX_BUF_SIZE 0x600 #define RX_DESC_SIZE (RX_DCNT * sizeof(struct r6040_descriptor)) #define TX_DESC_SIZE (TX_DCNT * sizeof(struct r6040_descriptor)) #define MBCR_DEFAULT 0x012A /* MAC Bus Control Register: - wait 1 host clock until SDRAM bus request becomes high priority - RX FIFO: 32 byte - TX FIFO: 64 byte - FIFO transfer length: 16 byte */ #define MCAST_MAX 4 /* Max number multicast addresses to filter */ /* PHY settings */ #define ICPLUS_PHY_ID 0x0243 MODULE_AUTHOR("Sten Wang ," "Daniel Gimpelevich ," "Florian Fainelli "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RDC R6040 NAPI PCI FastEthernet driver"); /*! which rx interrupts do we allow */ #define RX_INTS (RX_FIFO_FULL|RX_NO_DESC|RX_FINISH) /*! which tx interrupts do we allow */ #define TX_INTS (TX_FINISH) #define INT_MASK (RX_INTS | TX_INTS) struct r6040_descriptor { u16 status, len; /* 0-3 */ __le32 buf; /* 4-7 */ __le32 ndesc; /* 8-B */ u32 rev1; /* C-F */ char *vbufp; /* 10-13 */ struct r6040_descriptor *vndescp; /* 14-17 */ struct sk_buff *skb_ptr; /* 18-1B */ u32 rev2; /* 1C-1F */ } __attribute__((aligned(32))); /*! defines for the status field in the r6040_descriptor */ #define DESC_STATUS_OWNER_MAC (1<<15) /*!< if set the MAC is the owner of this descriptor */ #define DESC_STATUS_RX_OK (1<<14) /*!< rx was successful */ #define DESC_STATUS_RX_ERR (1<<11) /*!< rx PHY error */ #define DESC_STATUS_RX_ERR_DRIBBLE (1<<10) /*!< rx dribble packet */ #define DESC_STATUS_RX_ERR_BUFLEN (1<< 9) /*!< rx length exceeded buffer size */ #define DESC_STATUS_RX_ERR_LONG (1<< 8) /*!< rx length > maximum packet length */ #define DESC_STATUS_RX_ERR_RUNT (1<< 7) /*!< rx: packet length < 64 byte */ #define DESC_STATUS_RX_ERR_CRC (1<< 6) /*!< rx: crc error */ #define DESC_STATUS_RX_BROADCAST (1<< 5) /*!< rx: broadcast (no error) */ #define DESC_STATUS_RX_MULTICAST (1<< 4) /*!< rx: multicast (no error) */ #define DESC_STATUS_RX_MCH_HIT (1<< 3) /*!< rx: multicast hit in hash table (no error) */ #define DESC_STATUS_RX_MIDH_HIT (1<< 2) /*!< rx: MID table hit (no error) */ #define DESC_STATUS_RX_IDX_MID_MASK 3 /*!< rx: mask for the index of matched MIDx */ struct r6040_private { spinlock_t lock; /* driver lock */ struct timer_list timer; struct pci_dev *pdev; struct r6040_descriptor *rx_insert_ptr; struct r6040_descriptor *rx_remove_ptr; struct r6040_descriptor *tx_insert_ptr; struct r6040_descriptor *tx_remove_ptr; struct r6040_descriptor *rx_ring; struct r6040_descriptor *tx_ring; dma_addr_t rx_ring_dma; dma_addr_t tx_ring_dma; u16 tx_free_desc, phy_addr, phy_mode; u16 mcr0, mcr1; u16 switch_sig; struct net_device *dev; struct mii_if_info mii_if; struct napi_struct napi; void __iomem *base; }; static char *parent = "wlan0"; module_param(parent, charp, 0444); MODULE_PARM_DESC(parent, "Parent network device name to get the MAC address from"); static u8 mac_base[ETH_ALEN] = {0,0x50,0xfc,2,3,4}; module_param_array(mac_base, byte, NULL, 0444); MODULE_PARM_DESC(mac_base, "Starting MAC address"); static int reverse = 1; module_param(reverse, invbool, 0444); MODULE_PARM_DESC(reverse, "Reverse card indices"); static char version[] __devinitdata = DRV_NAME ": RDC R6040 NAPI net driver," "version "DRV_VERSION " (" DRV_RELDATE ")"; static int phy_table[] = { PHY1_ADDR, PHY2_ADDR }; /* forward declarations */ void r6040_multicast_list(struct net_device *dev); /* jal2: comment out to get more symbols for debugging */ //#define STATIC static #define STATIC #if DEBUG /*! hexdump an memory area into a string. delim is taken as the delimiter between two bytes. It is omitted if delim == '\0' */ STATIC char *hex2str(void *addr, char *buf, int nr_bytes, int delim) { unsigned char *src = addr; char *outb = buf; #define BIN2HEXDIGIT(x) ((x) < 10 ? '0'+(x) : 'A'-10+(x)) while (nr_bytes > 0) { *outb++ = BIN2HEXDIGIT(*src>>4); *outb++ = BIN2HEXDIGIT(*src&0xf); if (delim) *outb++ = delim; nr_bytes--; src++; } if (delim) outb--; *outb = '\0'; return buf; } #endif /* #if DEBUG */ /* Read a word data from PHY Chip */ STATIC int phy_read(void __iomem *ioaddr, int phy_addr, int reg) { int limit = 2048; u16 cmd; int rc; iowrite16(MDIO_READ + reg + (phy_addr << 8), ioaddr + MMDIO); /* Wait for the read bit to be cleared */ while (limit--) { cmd = ioread16(ioaddr + MMDIO); if (!(cmd & MDIO_READ)) break; } if (limit <= 0) err("phy addr x%x reg x%x timed out\n", phy_addr, reg); rc=ioread16(ioaddr + MMRD); dbg(DBG_PHY, "phy addr x%x reg x%x val x%x\n", phy_addr, reg, rc); return rc; } /* Write a word data from PHY Chip */ STATIC void phy_write(void __iomem *ioaddr, int phy_addr, int reg, u16 val) { int limit = 2048; u16 cmd; dbg(DBG_PHY, "phy addr x%x reg x%x val x%x\n", phy_addr, reg, val); iowrite16(val, ioaddr + MMWD); /* Write the command to the MDIO bus */ iowrite16(MDIO_WRITE + reg + (phy_addr << 8), ioaddr + MMDIO); /* Wait for the write bit to be cleared */ while (limit--) { cmd = ioread16(ioaddr + MMDIO); if (!(cmd & MDIO_WRITE)) break; } if (limit <= 0) err("phy addr x%x reg x%x val x%x timed out\n", phy_addr, reg, val); } STATIC int mdio_read(struct net_device *dev, int mii_id, int reg) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; return (phy_read(ioaddr, lp->phy_addr, reg)); } STATIC void mdio_write(struct net_device *dev, int mii_id, int reg, int val) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; phy_write(ioaddr, lp->phy_addr, reg, val); } void r6040_free_txbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int i; dbg(DBG_FREE_BUFS, "ENTER\n"); for (i = 0; i < TX_DCNT; i++) { if (lp->tx_insert_ptr->skb_ptr) { pci_unmap_single(lp->pdev, le32_to_cpu(lp->tx_insert_ptr->buf), MAX_BUF_SIZE, PCI_DMA_TODEVICE); dev_kfree_skb(lp->tx_insert_ptr->skb_ptr); lp->tx_insert_ptr->skb_ptr = NULL; } lp->tx_insert_ptr = lp->tx_insert_ptr->vndescp; } dbg(DBG_FREE_BUFS, "EXIT\n"); } /*! unmap and free all rx skb */ void r6040_free_rxbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int i; dbg(DBG_FREE_BUFS, "ENTER\n"); for (i = 0; i < RX_DCNT; i++) { if (lp->rx_insert_ptr->skb_ptr) { pci_unmap_single(lp->pdev, le32_to_cpu(lp->rx_insert_ptr->buf), MAX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(lp->rx_insert_ptr->skb_ptr); lp->rx_insert_ptr->skb_ptr = NULL; } lp->rx_insert_ptr = lp->rx_insert_ptr->vndescp; } dbg(DBG_FREE_BUFS, "EXIT\n"); } void r6040_init_ring_desc(struct r6040_descriptor *desc_ring, dma_addr_t desc_dma, int size) { struct r6040_descriptor *desc = desc_ring; dma_addr_t mapping = desc_dma; dbg(DBG_RING, "desc_ring %p desc_dma %08x size x%x\n", desc_ring, desc_dma, size); while (size-- > 0) { mapping += sizeof(*desc); memset(desc, 0, sizeof(*desc)); desc->ndesc = cpu_to_le32(mapping); desc->vndescp = desc + 1; desc++; } /* last descriptor points to first one to close the descriptor ring */ desc--; desc->ndesc = cpu_to_le32(desc_dma); desc->vndescp = desc_ring; } #if (DEBUG & DBG_TX_RING_DUMP) /*! dump the tx ring to syslog */ STATIC void dump_tx_ring(struct r6040_private *lp) { int i; struct r6040_descriptor *ptr; printk(KERN_INFO "%s: nr_desc x%x tx_ring %p tx_ring_dma %08x " "tx_insert %p tx_remove %p\n", DRV_NAME, TX_DCNT, lp->tx_ring, lp->tx_ring_dma, lp->tx_insert_ptr, lp->tx_remove_ptr); if (lp->tx_ring) { for(i=0, ptr=lp->tx_ring; i < TX_DCNT; i++, ptr++) { printk(KERN_INFO "%s: %d. descr: status x%x len x%x " "ndesc %08x vbufp %p vndescp %p skb_ptr %p\n", DRV_NAME, i, ptr->status, ptr->len, ptr->ndesc, ptr->vbufp, ptr->vndescp, ptr->skb_ptr); } } } #endif /* #if (DEBUG & DBG_TX_RING_DUMP) */ void r6040_init_txbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); lp->tx_free_desc = TX_DCNT; lp->tx_remove_ptr = lp->tx_insert_ptr = lp->tx_ring; r6040_init_ring_desc(lp->tx_ring, lp->tx_ring_dma, TX_DCNT); #if (DEBUG & DBG_TX_RING_DUMP) if (debug & DBG_TX_RING_DUMP) { dump_tx_ring(lp); } #endif } #if (DEBUG & DBG_RX_RING_DUMP) /*! dump the rx ring to syslog */ STATIC void dump_rx_ring(struct r6040_private *lp) { int i; struct r6040_descriptor *ptr; printk(KERN_INFO "%s: nr_desc x%x rx_ring %p rx_ring_dma %08x " "rx_insert %p rx_remove %p\n", DRV_NAME, RX_DCNT, lp->rx_ring, lp->rx_ring_dma, lp->rx_insert_ptr, lp->rx_remove_ptr); if (lp->rx_ring) { for(i=0, ptr=lp->rx_ring; i < RX_DCNT; i++, ptr++) { printk(KERN_INFO "%s: %d. descr: status x%x len x%x " "ndesc %08x vbufp %p vndescp %p skb_ptr %p\n", DRV_NAME, i, ptr->status, ptr->len, ptr->ndesc, ptr->vbufp, ptr->vndescp, ptr->skb_ptr); } } } #endif /* #if (DEBUG & DBG_TX_RING_DUMP) */ int r6040_alloc_rxbufs(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct r6040_descriptor *desc; struct sk_buff *skb; int rc; lp->rx_remove_ptr = lp->rx_insert_ptr = lp->rx_ring; r6040_init_ring_desc(lp->rx_ring, lp->rx_ring_dma, RX_DCNT); /* alloc skbs for the rx descriptors */ desc = lp->rx_ring; do { if (!(skb=netdev_alloc_skb(dev, MAX_BUF_SIZE))) { err("failed to alloc skb for rx\n"); rc = -ENOMEM; goto err_exit; } desc->skb_ptr = skb; desc->buf = cpu_to_le32(pci_map_single(lp->pdev, desc->skb_ptr->data, MAX_BUF_SIZE, PCI_DMA_FROMDEVICE)); desc->status = DESC_STATUS_OWNER_MAC; desc = desc->vndescp; } while (desc != lp->rx_ring); #if (DEBUG & DBG_RX_RING_DUMP) if (debug & DBG_RX_RING_DUMP) { dump_rx_ring(lp); } #endif return 0; err_exit: /* dealloc all previously allocated skb */ r6040_free_rxbufs(dev); return rc; } /*! reset MAC and set all registers */ void r6040_init_mac_regs(struct r6040_private *lp) { void __iomem *ioaddr = lp->base; int limit; char obuf[3*ETH_ALEN] __attribute__ ((unused)); /* Mask Off Interrupt */ iowrite16(MSK_INT, ioaddr + MIER); /* reset MAC */ iowrite16(MAC_RST, ioaddr + MCR1); udelay(100); limit=2048; while ((ioread16(ioaddr + MCR1) & MAC_RST) && limit-- > 0); /* Reset internal state machine */ iowrite16(2, ioaddr + MAC_SM); iowrite16(0, ioaddr + MAC_SM); udelay(5000); /* Restore MAC Addresses */ r6040_multicast_list(lp->dev); /* TODO: restore multcast and hash table */ /* MAC Bus Control Register */ iowrite16(MBCR_DEFAULT, ioaddr + MBCR); /* Buffer Size Register */ iowrite16(MAX_BUF_SIZE, ioaddr + MR_BSR); /* write tx ring start address */ iowrite16(lp->tx_ring_dma, ioaddr + MTD_SA0); iowrite16(lp->tx_ring_dma >> 16, ioaddr + MTD_SA1); /* write rx ring start address */ iowrite16(lp->rx_ring_dma, ioaddr + MRD_SA0); iowrite16(lp->rx_ring_dma >> 16, ioaddr + MRD_SA1); /* set interrupt waiting time and packet numbers */ iowrite16(0, ioaddr + MT_ICR); iowrite16(0, ioaddr + MR_ICR); /* enable interrupts */ iowrite16(INT_MASK, ioaddr + MIER); /* enable tx and rx */ iowrite16(lp->mcr0 | 0x0002, ioaddr); /* let TX poll the descriptors - we may got called by r6040_tx_timeout which has left some unsent tx buffers */ iowrite16(0x01, ioaddr + MTPR); } void r6040_tx_timeout(struct net_device *dev) { struct r6040_private *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; /* we read MISR, which clears on read (i.e. we may loose an RX interupt, but this is an error anyhow ... */ printk(KERN_WARNING "%s: transmit timed out, int enable %4.4x " "status %4.4x, PHY status %4.4x\n", dev->name, ioread16(ioaddr + MIER), ioread16(ioaddr + MISR), mdio_read(dev, priv->mii_if.phy_id, MII_BMSR)); dev->stats.tx_errors++; /* Reset MAC and re-init all registers */ r6040_init_mac_regs(priv); } struct net_device_stats *r6040_get_stats(struct net_device *dev) { struct r6040_private *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); dev->stats.rx_crc_errors += ioread8(ioaddr + ME_CNT1); dev->stats.multicast += ioread8(ioaddr + ME_CNT0); spin_unlock_irqrestore(&priv->lock, flags); return &dev->stats; } /* Stop RDC MAC and Free the allocated resource */ void r6040_down(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; struct pci_dev *pdev = lp->pdev; int limit = 2048; dbg(DBG_EXIT, "ENTER\n"); /* Stop MAC */ iowrite16(MSK_INT, ioaddr + MIER); /* Mask Off Interrupt */ iowrite16(MAC_RST, ioaddr + MCR1); /* Reset RDC MAC */ udelay(100); while ((ioread16(ioaddr+MCR1) & 1) && limit-- > 0); if (limit <= 0) err("timeout while waiting for reset done.\n"); free_irq(dev->irq, dev); /* Free RX buffer */ r6040_free_rxbufs(dev); /* Free TX buffer */ r6040_free_txbufs(dev); /* Free Descriptor memory */ pci_free_consistent(pdev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma); pci_free_consistent(pdev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma); dbg(DBG_EXIT, "EXIT\n"); } int r6040_close(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); dbg(DBG_EXIT, "ENTER\n"); /* deleted timer */ del_timer_sync(&lp->timer); spin_lock_irq(&lp->lock); napi_disable(&lp->napi); netif_stop_queue(dev); r6040_down(dev); spin_unlock_irq(&lp->lock); dbg(DBG_EXIT, "EXIT\n"); return 0; } /* Status of PHY CHIP. Returns 0x8000 for full duplex, 0 for half duplex */ STATIC int phy_mode_chk(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int phy_dat; /* PHY Link Status Check */ phy_dat = phy_read(ioaddr, lp->phy_addr, 1); if (!(phy_dat & 0x4)) phy_dat = 0x8000; /* Link Failed, full duplex */ /* PHY Chip Auto-Negotiation Status */ phy_dat = phy_read(ioaddr, lp->phy_addr, 1); if (phy_dat & 0x0020) { /* Auto Negotiation Mode */ phy_dat = phy_read(ioaddr, lp->phy_addr, 5); phy_dat &= phy_read(ioaddr, lp->phy_addr, 4); if (phy_dat & 0x140) /* Force full duplex */ phy_dat = 0x8000; else phy_dat = 0; } else { /* Force Mode */ phy_dat = phy_read(ioaddr, lp->phy_addr, 0); if (phy_dat & 0x100) phy_dat = 0x8000; else phy_dat = 0x0000; } dbg(DBG_PHY, "RETURN x%x\n", phy_dat); return phy_dat; }; void r6040_set_carrier(struct mii_if_info *mii) { if (phy_mode_chk(mii->dev)) { /* autoneg is off: Link is always assumed to be up */ if (!netif_carrier_ok(mii->dev)) netif_carrier_on(mii->dev); } else phy_mode_chk(mii->dev); } int r6040_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct r6040_private *lp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(rq); int rc; if (!netif_running(dev)) return -EINVAL; spin_lock_irq(&lp->lock); rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); spin_unlock_irq(&lp->lock); r6040_set_carrier(&lp->mii_if); return rc; } int r6040_rx(struct net_device *dev, int limit) { struct r6040_private *priv = netdev_priv(dev); int count=0; struct r6040_descriptor *descptr = priv->rx_remove_ptr; struct sk_buff *skb_ptr, *new_skb; char obuf[2*32+1] __attribute__ ((unused)); /* for debugging */ while (count < limit && !(descptr->status & DESC_STATUS_OWNER_MAC)) { /* limit not reached and the descriptor belongs to the CPU */ dbg(DBG_RX_DESCR, "descptr %p status x%x data len x%x\n", descptr, descptr->status, descptr->len); /* Check for errors */ if (descptr->status & DESC_STATUS_RX_ERR) { dev->stats.rx_errors++; if (descptr->status & (DESC_STATUS_RX_ERR_DRIBBLE| DESC_STATUS_RX_ERR_BUFLEN| DESC_STATUS_RX_ERR_LONG| DESC_STATUS_RX_ERR_RUNT)) { /* packet too long or too short*/ dev->stats.rx_length_errors++; } if (descptr->status & DESC_STATUS_RX_ERR_CRC) { dev->stats.rx_crc_errors++; } goto next_descr; } /* successful received packet */ /* first try to allocate new skb. If this fails we drop the packet and leave the old skb there.*/ new_skb = netdev_alloc_skb(dev, MAX_BUF_SIZE); if (!new_skb) { dev->stats.rx_dropped++; goto next_descr; } skb_ptr = descptr->skb_ptr; skb_ptr->dev = priv->dev; /* Do not count the CRC */ skb_put(skb_ptr, descptr->len - 4); pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf), MAX_BUF_SIZE, PCI_DMA_FROMDEVICE); skb_ptr->protocol = eth_type_trans(skb_ptr, priv->dev); dbg(DBG_RX_DATA, "rx len x%x: %s...\n", descptr->len, hex2str(skb_ptr->data, obuf, sizeof(obuf)/2, '\0')); /* Send to upper layer */ netif_receive_skb(skb_ptr); dev->last_rx = jiffies; dev->stats.rx_packets++; dev->stats.rx_bytes += (descptr->len-4); /* put new skb into descriptor */ descptr->skb_ptr = new_skb; descptr->buf = cpu_to_le32(pci_map_single(priv->pdev, descptr->skb_ptr->data, MAX_BUF_SIZE, PCI_DMA_FROMDEVICE)); next_descr: /* put the descriptor back to the MAC */ descptr->status = DESC_STATUS_OWNER_MAC; descptr = descptr->vndescp; count++; /* shall we count errors and dropped packets as well? */ } /* while (limit && !(descptr->status & DESC_STATUS_OWNER_MAC)) */ /* remember next descriptor to check for rx */ priv->rx_remove_ptr = descptr; return count; } void r6040_tx(struct net_device *dev) { struct r6040_private *priv = netdev_priv(dev); struct r6040_descriptor *descptr; void __iomem *ioaddr = priv->base; struct sk_buff *skb_ptr; u16 err; spin_lock(&priv->lock); descptr = priv->tx_remove_ptr; while (priv->tx_free_desc < TX_DCNT) { /* Check for errors */ err = ioread16(ioaddr + MLSR); if (err & 0x0200) dev->stats.rx_fifo_errors++; if (err & (0x2000 | 0x4000)) dev->stats.tx_carrier_errors++; dbg(DBG_TX_DONE, "descptr %p status x%x err x%x jiffies %lu\n", descptr, descptr->status, err, jiffies); if (descptr->status & 0x8000) break; /* Not complete */ skb_ptr = descptr->skb_ptr; pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf), skb_ptr->len, PCI_DMA_TODEVICE); /* Free buffer */ dev_kfree_skb_irq(skb_ptr); descptr->skb_ptr = NULL; /* To next descriptor */ descptr = descptr->vndescp; priv->tx_free_desc++; } priv->tx_remove_ptr = descptr; if (priv->tx_free_desc) netif_wake_queue(dev); spin_unlock(&priv->lock); } int r6040_poll(struct napi_struct *napi, int budget) { struct r6040_private *priv = container_of(napi, struct r6040_private, napi); struct net_device *dev = priv->dev; void __iomem *ioaddr = priv->base; int work_done; work_done = r6040_rx(dev, budget); dbg(DBG_POLL, "budget x%x done x%x\n", budget, work_done); if (work_done < budget) { netif_rx_complete(dev, napi); /* Enable RX interrupt */ iowrite16(ioread16(ioaddr + MIER) | RX_INTS, ioaddr + MIER); } return work_done; } /* The RDC interrupt handler. */ irqreturn_t r6040_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; u16 status; /* Read MISR status and clear */ status = ioread16(ioaddr + MISR); dbg(DBG_IRQ, "status x%x jiffies %lu\n", status, jiffies); if (status == 0x0000 || status == 0xffff) return IRQ_NONE; /* rx early / rx finish interrupt or rx descriptor unavail. */ if (status & RX_INTS) { if (status & RX_NO_DESC) { /* rx descriptor unavail. */ dev->stats.rx_dropped++; dev->stats.rx_missed_errors++; } /* Mask off RX interrupts */ iowrite16(ioread16(ioaddr + MIER) & ~RX_INTS, ioaddr + MIER); netif_rx_schedule(dev, &lp->napi); } /* rx FIFO full */ if (status & RX_FIFO_FULL) { dev->stats.rx_fifo_errors++; } /* TX interrupt request */ if (status & 0x10) r6040_tx(dev); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER void r6040_poll_controller(struct net_device *dev) { disable_irq(dev->irq); r6040_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* Init RDC MAC */ int r6040_up(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int rc; dbg(DBG_INIT, "ENTER\n"); /* Initialise and alloc RX/TX buffers */ r6040_init_txbufs(dev); if ((rc=r6040_alloc_rxbufs(dev))) return rc; /* Read the PHY ID */ lp->switch_sig = phy_read(ioaddr, 0, 2); if (lp->switch_sig == ICPLUS_PHY_ID) { phy_write(ioaddr, 29, 31, 0x175C); /* Enable registers */ lp->phy_mode = 0x8000; } else { /* PHY Mode Check */ phy_write(ioaddr, lp->phy_addr, 4, PHY_CAP); phy_write(ioaddr, lp->phy_addr, 0, PHY_MODE); if (PHY_MODE == 0x3100) lp->phy_mode = phy_mode_chk(dev); else lp->phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0; } /* configure duplex mode */ lp->mcr0 |= lp->phy_mode; /* improve performance (by RDC guys) */ phy_write(ioaddr, 30, 17, (phy_read(ioaddr, 30, 17) | 0x4000)); phy_write(ioaddr, 30, 17, ~((~phy_read(ioaddr, 30, 17)) | 0x2000)); phy_write(ioaddr, 0, 19, 0x0000); phy_write(ioaddr, 0, 30, 0x01F0); /* Reset MAC and init all registers */ r6040_init_mac_regs(lp); return 0; } /* A periodic timer routine Polling PHY Chip Link Status */ void r6040_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; u16 phy_mode; /* Polling PHY Chip Status */ if (PHY_MODE == 0x3100) phy_mode = phy_mode_chk(dev); else phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0; if (phy_mode != lp->phy_mode) { lp->phy_mode = phy_mode; lp->mcr0 = (lp->mcr0 & 0x7fff) | phy_mode; iowrite16(lp->mcr0, ioaddr); printk(KERN_INFO "Link Change x%x \n", ioread16(ioaddr)); } /* Timer active again */ mod_timer(&lp->timer, jiffies + round_jiffies(HZ)); } int r6040_open(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); int ret; dbg(DBG_OPEN, "ENTER\n"); /* Request IRQ and Register interrupt handler */ ret = request_irq(dev->irq, &r6040_interrupt, IRQF_SHARED, dev->name, dev); if (ret) return ret; dbg(DBG_OPEN, "got irq %d\n", dev->irq); /* Allocate Descriptor memory */ lp->rx_ring = pci_alloc_consistent(lp->pdev, RX_DESC_SIZE, &lp->rx_ring_dma); if (!lp->rx_ring) return -ENOMEM; dbg(DBG_OPEN, "allocated rx ring\n"); lp->tx_ring = pci_alloc_consistent(lp->pdev, TX_DESC_SIZE, &lp->tx_ring_dma); if (!lp->tx_ring) { pci_free_consistent(lp->pdev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma); return -ENOMEM; } dbg(DBG_OPEN, "allocated tx ring\n"); if ((ret=r6040_up(dev))) { pci_free_consistent(lp->pdev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma); pci_free_consistent(lp->pdev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma); return ret; } napi_enable(&lp->napi); netif_start_queue(dev); /* set and active a timer process */ setup_timer(&lp->timer, r6040_timer, (unsigned long) dev); if (lp->switch_sig != ICPLUS_PHY_ID) mod_timer(&lp->timer, jiffies + HZ); return 0; } int r6040_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); struct r6040_descriptor *descptr; void __iomem *ioaddr = lp->base; unsigned long flags; int ret = NETDEV_TX_OK; /* Critical Section */ spin_lock_irqsave(&lp->lock, flags); /* TX resource check */ if (!lp->tx_free_desc) { spin_unlock_irqrestore(&lp->lock, flags); netif_stop_queue(dev); printk(KERN_ERR DRV_NAME ": no tx descriptor\n"); ret = NETDEV_TX_BUSY; return ret; } /* Statistic Counter */ dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; /* Set TX descriptor & Transmit it */ lp->tx_free_desc--; descptr = lp->tx_insert_ptr; if (skb->len < MISR) descptr->len = MISR; else descptr->len = skb->len; descptr->skb_ptr = skb; descptr->buf = cpu_to_le32(pci_map_single(lp->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); dbg(DBG_TX_DESCR, "desc @ %p: len x%x buf %08x skb->data %p skb->len x%x jiffies %lu\n", descptr, descptr->len, descptr->buf, skb->data, skb->len, jiffies); { char obuf[2*32+1]; dbg(DBG_TX_DATA, "tx len x%x: %s\n", descptr->len, hex2str(skb->data, obuf, sizeof(obuf)/2, '\0')); } descptr->status = 0x8000; /* Trigger the MAC to check the TX descriptor */ iowrite16(0x01, ioaddr + MTPR); lp->tx_insert_ptr = descptr->vndescp; /* If no tx resource, stop */ if (!lp->tx_free_desc) netif_stop_queue(dev); dev->trans_start = jiffies; spin_unlock_irqrestore(&lp->lock, flags); return ret; } /*! set MAC addresses and promiscous mode */ void r6040_multicast_list(struct net_device *dev) { struct r6040_private *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; u16 *adrp; u16 reg; unsigned long flags; struct dev_mc_list *dmi = dev->mc_list; int i; char obuf[3*ETH_ALEN] __attribute__ ((unused)); /* MAC Address */ adrp = (u16 *)dev->dev_addr; iowrite16(adrp[0], ioaddr + MID_0L); iowrite16(adrp[1], ioaddr + MID_0M); iowrite16(adrp[2], ioaddr + MID_0H); dbg(DBG_MAC_ADDR, "%s: set MAC addr %s\n", dev->name, hex2str(dev->dev_addr, obuf, ETH_ALEN, ':')); /* Promiscous Mode */ spin_lock_irqsave(&lp->lock, flags); /* Clear AMCP & PROM bits */ reg = ioread16(ioaddr) & ~0x0120; if (dev->flags & IFF_PROMISC) { reg |= 0x0020; lp->mcr0 |= 0x0020; } /* Too many multicast addresses * accept all traffic */ else if ((dev->mc_count > MCAST_MAX) || (dev->flags & IFF_ALLMULTI)) reg |= 0x0020; iowrite16(reg, ioaddr); spin_unlock_irqrestore(&lp->lock, flags); /* Build the hash table */ if (dev->mc_count > MCAST_MAX) { u16 hash_table[4]; u32 crc; for (i = 0; i < 4; i++) hash_table[i] = 0; for (i = 0; i < dev->mc_count; i++) { char *addrs = dmi->dmi_addr; dmi = dmi->next; if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); } /* Write the index of the hash table */ for (i = 0; i < 4; i++) iowrite16(hash_table[i] << 14, ioaddr + MCR1); /* Fill the MAC hash tables with their values */ iowrite16(hash_table[0], ioaddr + MAR0); iowrite16(hash_table[1], ioaddr + MAR1); iowrite16(hash_table[2], ioaddr + MAR2); iowrite16(hash_table[3], ioaddr + MAR3); } /* Multicast Address 1~4 case */ for (i = 0, dmi; (i < dev->mc_count) && (i < MCAST_MAX); i++) { adrp = (u16 *)dmi->dmi_addr; iowrite16(adrp[0], ioaddr + MID_1L + 8*i); iowrite16(adrp[1], ioaddr + MID_1M + 8*i); iowrite16(adrp[2], ioaddr + MID_1H + 8*i); dmi = dmi->next; } for (i = dev->mc_count; i < MCAST_MAX; i++) { iowrite16(0xffff, ioaddr + MID_0L + 8*i); iowrite16(0xffff, ioaddr + MID_0M + 8*i); iowrite16(0xffff, ioaddr + MID_0H + 8*i); } } STATIC void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct r6040_private *rp = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->bus_info, pci_name(rp->pdev)); } STATIC int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct r6040_private *rp = netdev_priv(dev); int rc; spin_lock_irq(&rp->lock); rc = mii_ethtool_gset(&rp->mii_if, cmd); spin_unlock_irq(&rp->lock); return rc; } STATIC int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct r6040_private *rp = netdev_priv(dev); int rc; spin_lock_irq(&rp->lock); rc = mii_ethtool_sset(&rp->mii_if, cmd); spin_unlock_irq(&rp->lock); r6040_set_carrier(&rp->mii_if); return rc; } STATIC u32 netdev_get_link(struct net_device *dev) { struct r6040_private *rp = netdev_priv(dev); return mii_link_ok(&rp->mii_if); } static struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_settings = netdev_get_settings, .set_settings = netdev_set_settings, .get_link = netdev_get_link, }; int __devinit r6040_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev, *parent_dev; struct r6040_private *lp; void __iomem *ioaddr; int err, io_size = R6040_IO_SIZE; static int card_idx = -1; long pioaddr; printk(KERN_INFO "%s\n", version); printk(KERN_INFO DRV_NAME ": debug %x\n", debug); err = pci_enable_device(pdev); if (err) return err; /* this should always be supported */ if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses" "not supported by the card\n"); return -ENODEV; } if (pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) { printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses" "not supported by the card\n"); return -ENODEV; } /* IO Size check */ if (pci_resource_len(pdev, 0) < io_size) { printk(KERN_ERR "Insufficient PCI resources, aborting\n"); return -EIO; } pioaddr = pci_resource_start(pdev, 0); /* IO map base address */ pci_set_master(pdev); dev = alloc_etherdev(sizeof(struct r6040_private)); if (!dev) { printk(KERN_ERR "Failed to allocate etherdev\n"); return -ENOMEM; } SET_NETDEV_DEV(dev, &pdev->dev); lp = netdev_priv(dev); if (pci_request_regions(pdev, DRV_NAME)) { printk(KERN_ERR DRV_NAME ": Failed to request PCI regions\n"); err = -ENODEV; goto err_out_disable; } ioaddr = pci_iomap(pdev, 0, io_size); if (!ioaddr) { printk(KERN_ERR "ioremap failed for device %s\n", pci_name(pdev)); return -EIO; } /* Init system & device */ lp->base = ioaddr; dev->irq = pdev->irq; spin_lock_init(&lp->lock); pci_set_drvdata(pdev, dev); card_idx++; /* Link new device into r6040_root_dev */ lp->pdev = pdev; lp->dev = dev; /* Init RDC private data */ lp->mcr0 = 0x1002; lp->phy_addr = phy_table[card_idx]; lp->switch_sig = 0; /* The RDC-specific entries in the device structure. */ dev->open = &r6040_open; dev->hard_start_xmit = &r6040_start_xmit; dev->stop = &r6040_close; dev->get_stats = r6040_get_stats; dev->set_multicast_list = &r6040_multicast_list; dev->do_ioctl = &r6040_ioctl; dev->ethtool_ops = &netdev_ethtool_ops; dev->tx_timeout = &r6040_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; /* You must specify a netdevice with a "parent=" parameter, whose address is copied, or an array of bytes comprising a literal address; otherwise the (default) address of the Sitecom WL-153 bootloader is used. */ memcpy(dev->dev_addr, mac_base, ETH_ALEN); if (parent) { parent_dev = __dev_get_by_name(&init_net, parent); if (parent_dev) memcpy(dev->dev_addr, parent_dev->dev_addr, ETH_ALEN); } dev->dev_addr[ETH_ALEN-1] += card_idx ^ reverse; /* + 0 or 1 */ #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = r6040_poll_controller; #endif netif_napi_add(dev, &lp->napi, r6040_poll, 64); lp->mii_if.dev = dev; lp->mii_if.mdio_read = mdio_read; lp->mii_if.mdio_write = mdio_write; lp->mii_if.phy_id = lp->phy_addr; lp->mii_if.phy_id_mask = 0x1f; lp->mii_if.reg_num_mask = 0x1f; if (reverse && ((card_idx & 1) == 0) && (dev_alloc_name(dev, dev->name) >= 0)) for (err = strlen(dev->name); err; err--) { if (dev->name[err - 1]++ != '9') break; dev->name[err - 1] = '0'; } /* Register net device. After this dev->name assign */ err = register_netdev(dev); if (err) { printk(KERN_ERR DRV_NAME ": Failed to register net device\n"); goto err_out_res; } dbg(DBG_INIT, "%s successfully registered\n", dev->name); return 0; err_out_res: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); return err; } void __devexit r6040_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); unregister_netdev(dev); pci_release_regions(pdev); free_netdev(dev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static struct pci_device_id r6040_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_RDC, 0x6040) }, { 0 } }; MODULE_DEVICE_TABLE(pci, r6040_pci_tbl); static struct pci_driver r6040_driver = { .name = DRV_NAME, .id_table = r6040_pci_tbl, .probe = r6040_init_one, .remove = __devexit_p(r6040_remove_one), }; static int __init r6040_init(void) { return pci_register_driver(&r6040_driver); } static void __exit r6040_cleanup(void) { pci_unregister_driver(&r6040_driver); } module_init(r6040_init); module_exit(r6040_cleanup);