/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2009 John Crispin */ #include #include #include #include #include #include #include #include #include #include #include #include "ramips_eth.h" #define TX_TIMEOUT (20 * HZ / 100) #define MAX_RX_LENGTH 1600 #ifdef CONFIG_RALINK_RT305X #include "ramips_esw.c" #else static inline int rt305x_esw_init(void) { return 0; } static inline void rt305x_esw_exit(void) { } #endif #define phys_to_bus(a) (a & 0x1FFFFFFF) #ifdef CONFIG_RAMIPS_ETH_DEBUG #define RADEBUG(fmt, args...) printk(KERN_DEBUG fmt, ## args) #else #define RADEBUG(fmt, args...) do {} while (0) #endif static struct net_device * ramips_dev; static void __iomem *ramips_fe_base = 0; static inline void ramips_fe_wr(u32 val, unsigned reg) { __raw_writel(val, ramips_fe_base + reg); } static inline u32 ramips_fe_rr(unsigned reg) { return __raw_readl(ramips_fe_base + reg); } static inline void ramips_fe_int_disable(u32 mask) { ramips_fe_wr(ramips_fe_rr(RAMIPS_FE_INT_ENABLE) & ~mask, RAMIPS_FE_INT_ENABLE); /* flush write */ ramips_fe_rr(RAMIPS_FE_INT_ENABLE); } static inline void ramips_fe_int_enable(u32 mask) { ramips_fe_wr(ramips_fe_rr(RAMIPS_FE_INT_ENABLE) | mask, RAMIPS_FE_INT_ENABLE); /* flush write */ ramips_fe_rr(RAMIPS_FE_INT_ENABLE); } static inline void ramips_hw_set_macaddr(unsigned char *mac) { ramips_fe_wr((mac[0] << 8) | mac[1], RAMIPS_GDMA1_MAC_ADRH); ramips_fe_wr((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5], RAMIPS_GDMA1_MAC_ADRL); } #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT3883) #define RAMIPS_MDIO_RETRY 1000 static unsigned char *ramips_speed_str(struct raeth_priv *re) { switch (re->speed) { case SPEED_1000: return "1000"; case SPEED_100: return "100"; case SPEED_10: return "10"; } return "?"; } static void ramips_link_adjust(struct raeth_priv *re) { struct ramips_eth_platform_data *pdata; u32 mdio_cfg; pdata = re->parent->platform_data; if (!re->link) { netif_carrier_off(re->netdev); netdev_info(re->netdev, "link down\n"); return; } mdio_cfg = RAMIPS_MDIO_CFG_TX_CLK_SKEW_200 | RAMIPS_MDIO_CFG_TX_CLK_SKEW_200 | RAMIPS_MDIO_CFG_GP1_FRC_EN; if (re->duplex == DUPLEX_FULL) mdio_cfg |= RAMIPS_MDIO_CFG_GP1_DUPLEX; if (re->tx_fc) mdio_cfg |= RAMIPS_MDIO_CFG_GP1_FC_TX; if (re->rx_fc) mdio_cfg |= RAMIPS_MDIO_CFG_GP1_FC_RX; switch (re->speed) { case SPEED_10: mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_10; break; case SPEED_100: mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_100; break; case SPEED_1000: mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_1000; break; default: BUG(); } ramips_fe_wr(mdio_cfg, RAMIPS_MDIO_CFG); netif_carrier_on(re->netdev); netdev_info(re->netdev, "link up (%sMbps/%s duplex)\n", ramips_speed_str(re), (DUPLEX_FULL == re->duplex) ? "Full" : "Half"); } static int ramips_mdio_wait_ready(struct raeth_priv *re) { int retries; retries = RAMIPS_MDIO_RETRY; while (1) { u32 t; t = ramips_fe_rr(RAMIPS_MDIO_ACCESS); if ((t & (0x1 << 31)) == 0) return 0; if (retries-- == 0) break; udelay(1); } dev_err(re->parent, "MDIO operation timed out\n"); return -ETIMEDOUT; } static int ramips_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg) { struct raeth_priv *re = bus->priv; int err; u32 t; err = ramips_mdio_wait_ready(re); if (err) return 0xffff; t = (phy_addr << 24) | (phy_reg << 16); ramips_fe_wr(t, RAMIPS_MDIO_ACCESS); t |= (1 << 31); ramips_fe_wr(t, RAMIPS_MDIO_ACCESS); err = ramips_mdio_wait_ready(re); if (err) return 0xffff; RADEBUG("%s: addr=%04x, reg=%04x, value=%04x\n", __func__, phy_addr, phy_reg, ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff); return ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff; } static int ramips_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val) { struct raeth_priv *re = bus->priv; int err; u32 t; RADEBUG("%s: addr=%04x, reg=%04x, value=%04x\n", __func__, phy_addr, phy_reg, ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff); err = ramips_mdio_wait_ready(re); if (err) return err; t = (1 << 30) | (phy_addr << 24) | (phy_reg << 16) | val; ramips_fe_wr(t, RAMIPS_MDIO_ACCESS); t |= (1 << 31); ramips_fe_wr(t, RAMIPS_MDIO_ACCESS); return ramips_mdio_wait_ready(re); } static int ramips_mdio_reset(struct mii_bus *bus) { /* TODO */ return 0; } static int ramips_mdio_init(struct raeth_priv *re) { int err; int i; re->mii_bus = mdiobus_alloc(); if (re->mii_bus == NULL) return -ENOMEM; re->mii_bus->name = "ramips_mdio"; re->mii_bus->read = ramips_mdio_read; re->mii_bus->write = ramips_mdio_write; re->mii_bus->reset = ramips_mdio_reset; re->mii_bus->irq = re->mii_irq; re->mii_bus->priv = re; re->mii_bus->parent = re->parent; snprintf(re->mii_bus->id, MII_BUS_ID_SIZE, "%s", "ramips_mdio"); re->mii_bus->phy_mask = 0; for (i = 0; i < PHY_MAX_ADDR; i++) re->mii_irq[i] = PHY_POLL; err = mdiobus_register(re->mii_bus); if (err) goto err_free_bus; return 0; err_free_bus: kfree(re->mii_bus); return err; } static void ramips_mdio_cleanup(struct raeth_priv *re) { mdiobus_unregister(re->mii_bus); kfree(re->mii_bus); } static void ramips_phy_link_adjust(struct net_device *dev) { struct raeth_priv *re = netdev_priv(dev); struct phy_device *phydev = re->phy_dev; unsigned long flags; int status_change = 0; spin_lock_irqsave(&re->phy_lock, flags); if (phydev->link) if (re->duplex != phydev->duplex || re->speed != phydev->speed) status_change = 1; if (phydev->link != re->link) status_change = 1; re->link = phydev->link; re->duplex = phydev->duplex; re->speed = phydev->speed; if (status_change) ramips_link_adjust(re); spin_unlock_irqrestore(&re->phy_lock, flags); } static int ramips_phy_connect_multi(struct raeth_priv *re) { struct net_device *netdev = re->netdev; struct ramips_eth_platform_data *pdata; struct phy_device *phydev = NULL; int phy_addr; int ret = 0; pdata = re->parent->platform_data; for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { if (!(pdata->phy_mask & (1 << phy_addr))) continue; if (re->mii_bus->phy_map[phy_addr] == NULL) continue; RADEBUG("%s: PHY found at %s, uid=%08x\n", netdev->name, dev_name(&re->mii_bus->phy_map[phy_addr]->dev), re->mii_bus->phy_map[phy_addr]->phy_id); if (phydev == NULL) phydev = re->mii_bus->phy_map[phy_addr]; } if (!phydev) { netdev_err(netdev, "no PHY found with phy_mask=%08x\n", pdata->phy_mask); return -ENODEV; } re->phy_dev = phy_connect(netdev, dev_name(&phydev->dev), ramips_phy_link_adjust, 0, pdata->phy_if_mode); if (IS_ERR(re->phy_dev)) { netdev_err(netdev, "could not connect to PHY at %s\n", dev_name(&phydev->dev)); return PTR_ERR(re->phy_dev); } phydev->supported &= PHY_GBIT_FEATURES; phydev->advertising = phydev->supported; RADEBUG("%s: connected to PHY at %s [uid=%08x, driver=%s]\n", netdev->name, dev_name(&phydev->dev), phydev->phy_id, phydev->drv->name); re->link = 0; re->speed = 0; re->duplex = -1; re->rx_fc = 0; re->tx_fc = 0; return ret; } static int ramips_phy_connect_fixed(struct raeth_priv *re) { struct ramips_eth_platform_data *pdata; pdata = re->parent->platform_data; switch (pdata->speed) { case SPEED_10: case SPEED_100: case SPEED_1000: break; default: netdev_err(re->netdev, "invalid speed specified\n"); return -EINVAL; } RADEBUG("%s: using fixed link parameters\n", re->netdev->name); re->speed = pdata->speed; re->duplex = pdata->duplex; re->tx_fc = pdata->tx_fc; re->rx_fc = pdata->tx_fc; return 0; } static int ramips_phy_connect(struct raeth_priv *re) { struct ramips_eth_platform_data *pdata; pdata = re->parent->platform_data; if (pdata->phy_mask) return ramips_phy_connect_multi(re); return ramips_phy_connect_fixed(re); } static void ramips_phy_disconnect(struct raeth_priv *re) { if (re->phy_dev) phy_disconnect(re->phy_dev); } static void ramips_phy_start(struct raeth_priv *re) { if (re->phy_dev) { phy_start(re->phy_dev); } else { re->link = 1; ramips_link_adjust(re); } } static void ramips_phy_stop(struct raeth_priv *re) { if (re->phy_dev) { phy_stop(re->phy_dev); } else { re->link = 0; ramips_link_adjust(re); } } #else static inline int ramips_mdio_init(struct raeth_priv *re) { return 0; } static inline void ramips_mdio_cleanup(struct raeth_priv *re) { } static inline int ramips_phy_connect(struct raeth_priv *re) { return 0; } static inline void ramips_phy_disconnect(struct raeth_priv *re) { } static inline void ramips_phy_start(struct raeth_priv *re) { } static inline void ramips_phy_stop(struct raeth_priv *re) { } #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT3883 */ static void ramips_cleanup_dma(struct raeth_priv *re) { int i; for (i = 0; i < NUM_RX_DESC; i++) if (re->rx_skb[i]) { dma_unmap_single(&re->netdev->dev, re->rx_dma[i], MAX_RX_LENGTH, DMA_FROM_DEVICE); dev_kfree_skb_any(re->rx_skb[i]); } if (re->rx) dma_free_coherent(&re->netdev->dev, NUM_RX_DESC * sizeof(struct ramips_rx_dma), re->rx, re->rx_desc_dma); if (re->tx) dma_free_coherent(&re->netdev->dev, NUM_TX_DESC * sizeof(struct ramips_tx_dma), re->tx, re->tx_desc_dma); } static int ramips_alloc_dma(struct raeth_priv *re) { int err = -ENOMEM; int i; re->skb_free_idx = 0; /* setup tx ring */ re->tx = dma_alloc_coherent(&re->netdev->dev, NUM_TX_DESC * sizeof(struct ramips_tx_dma), &re->tx_desc_dma, GFP_ATOMIC); if (!re->tx) goto err_cleanup; memset(re->tx, 0, NUM_TX_DESC * sizeof(struct ramips_tx_dma)); for (i = 0; i < NUM_TX_DESC; i++) { re->tx[i].txd2 = TX_DMA_LSO | TX_DMA_DONE; re->tx[i].txd4 = TX_DMA_QN(3) | TX_DMA_PN(1); } /* setup rx ring */ re->rx = dma_alloc_coherent(&re->netdev->dev, NUM_RX_DESC * sizeof(struct ramips_rx_dma), &re->rx_desc_dma, GFP_ATOMIC); if (!re->rx) goto err_cleanup; memset(re->rx, 0, sizeof(struct ramips_rx_dma) * NUM_RX_DESC); for (i = 0; i < NUM_RX_DESC; i++) { dma_addr_t dma_addr; struct sk_buff *new_skb = dev_alloc_skb(MAX_RX_LENGTH + NET_IP_ALIGN); if (!new_skb) goto err_cleanup; skb_reserve(new_skb, NET_IP_ALIGN); dma_addr = dma_map_single(&re->netdev->dev, new_skb->data, MAX_RX_LENGTH, DMA_FROM_DEVICE); re->rx_dma[i] = dma_addr; re->rx[i].rxd1 = (unsigned int) re->rx_dma[i]; re->rx[i].rxd2 |= RX_DMA_LSO; re->rx_skb[i] = new_skb; } return 0; err_cleanup: ramips_cleanup_dma(re); return err; } static void ramips_setup_dma(struct raeth_priv *re) { ramips_fe_wr(re->tx_desc_dma, RAMIPS_TX_BASE_PTR0); ramips_fe_wr(NUM_TX_DESC, RAMIPS_TX_MAX_CNT0); ramips_fe_wr(0, RAMIPS_TX_CTX_IDX0); ramips_fe_wr(RAMIPS_PST_DTX_IDX0, RAMIPS_PDMA_RST_CFG); ramips_fe_wr(re->rx_desc_dma, RAMIPS_RX_BASE_PTR0); ramips_fe_wr(NUM_RX_DESC, RAMIPS_RX_MAX_CNT0); ramips_fe_wr((NUM_RX_DESC - 1), RAMIPS_RX_CALC_IDX0); ramips_fe_wr(RAMIPS_PST_DRX_IDX0, RAMIPS_PDMA_RST_CFG); } static int ramips_eth_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct raeth_priv *priv = netdev_priv(dev); unsigned long tx; unsigned int tx_next; dma_addr_t mapped_addr; if (priv->plat->min_pkt_len) { if (skb->len < priv->plat->min_pkt_len) { if (skb_padto(skb, priv->plat->min_pkt_len)) { printk(KERN_ERR "ramips_eth: skb_padto failed\n"); kfree_skb(skb); return 0; } skb_put(skb, priv->plat->min_pkt_len - skb->len); } } dev->trans_start = jiffies; mapped_addr = dma_map_single(&priv->netdev->dev, skb->data, skb->len, DMA_TO_DEVICE); spin_lock(&priv->page_lock); tx = ramips_fe_rr(RAMIPS_TX_CTX_IDX0); tx_next = (tx + 1) % NUM_TX_DESC; if ((priv->tx_skb[tx]) || (priv->tx_skb[tx_next]) || !(priv->tx[tx].txd2 & TX_DMA_DONE) || !(priv->tx[tx_next].txd2 & TX_DMA_DONE)) goto out; priv->tx[tx].txd1 = (unsigned int) mapped_addr; priv->tx[tx].txd2 &= ~(TX_DMA_PLEN0_MASK | TX_DMA_DONE); priv->tx[tx].txd2 |= TX_DMA_PLEN0(skb->len); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; priv->tx_skb[tx] = skb; wmb(); ramips_fe_wr(tx_next, RAMIPS_TX_CTX_IDX0); spin_unlock(&priv->page_lock); return NETDEV_TX_OK; out: spin_unlock(&priv->page_lock); dev->stats.tx_dropped++; kfree_skb(skb); return NETDEV_TX_OK; } static void ramips_eth_rx_hw(unsigned long ptr) { struct net_device *dev = (struct net_device *) ptr; struct raeth_priv *priv = netdev_priv(dev); int rx; int max_rx = 16; while (max_rx) { struct sk_buff *rx_skb, *new_skb; int pktlen; rx = (ramips_fe_rr(RAMIPS_RX_CALC_IDX0) + 1) % NUM_RX_DESC; if (!(priv->rx[rx].rxd2 & RX_DMA_DONE)) break; max_rx--; rx_skb = priv->rx_skb[rx]; pktlen = RX_DMA_PLEN0(priv->rx[rx].rxd2); new_skb = netdev_alloc_skb(dev, MAX_RX_LENGTH + NET_IP_ALIGN); /* Reuse the buffer on allocation failures */ if (new_skb) { dma_addr_t dma_addr; dma_unmap_single(&priv->netdev->dev, priv->rx_dma[rx], MAX_RX_LENGTH, DMA_FROM_DEVICE); skb_put(rx_skb, pktlen); rx_skb->dev = dev; rx_skb->protocol = eth_type_trans(rx_skb, dev); rx_skb->ip_summed = CHECKSUM_NONE; dev->stats.rx_packets++; dev->stats.rx_bytes += pktlen; netif_rx(rx_skb); priv->rx_skb[rx] = new_skb; skb_reserve(new_skb, NET_IP_ALIGN); dma_addr = dma_map_single(&priv->netdev->dev, new_skb->data, MAX_RX_LENGTH, DMA_FROM_DEVICE); priv->rx_dma[rx] = dma_addr; priv->rx[rx].rxd1 = (unsigned int) dma_addr; } else { dev->stats.rx_dropped++; } priv->rx[rx].rxd2 &= ~RX_DMA_DONE; wmb(); ramips_fe_wr(rx, RAMIPS_RX_CALC_IDX0); } if (max_rx == 0) tasklet_schedule(&priv->rx_tasklet); else ramips_fe_int_enable(RAMIPS_RX_DLY_INT); } static void ramips_eth_tx_housekeeping(unsigned long ptr) { struct net_device *dev = (struct net_device*)ptr; struct raeth_priv *priv = netdev_priv(dev); spin_lock(&priv->page_lock); while ((priv->tx[priv->skb_free_idx].txd2 & TX_DMA_DONE) && (priv->tx_skb[priv->skb_free_idx])) { dev_kfree_skb_irq(priv->tx_skb[priv->skb_free_idx]); priv->tx_skb[priv->skb_free_idx] = 0; priv->skb_free_idx++; if (priv->skb_free_idx >= NUM_TX_DESC) priv->skb_free_idx = 0; } spin_unlock(&priv->page_lock); ramips_fe_int_enable(RAMIPS_TX_DLY_INT); } static void ramips_eth_timeout(struct net_device *dev) { struct raeth_priv *priv = netdev_priv(dev); tasklet_schedule(&priv->tx_housekeeping_tasklet); } static irqreturn_t ramips_eth_irq(int irq, void *dev) { struct raeth_priv *priv = netdev_priv(dev); unsigned long fe_int = ramips_fe_rr(RAMIPS_FE_INT_STATUS); ramips_fe_wr(0xFFFFFFFF, RAMIPS_FE_INT_STATUS); if (fe_int & RAMIPS_RX_DLY_INT) { ramips_fe_int_disable(RAMIPS_RX_DLY_INT); tasklet_schedule(&priv->rx_tasklet); } if (fe_int & RAMIPS_TX_DLY_INT) { ramips_fe_int_disable(RAMIPS_TX_DLY_INT); tasklet_schedule(&priv->tx_housekeeping_tasklet); } return IRQ_HANDLED; } static int ramips_eth_open(struct net_device *dev) { struct raeth_priv *priv = netdev_priv(dev); int err; err = request_irq(dev->irq, ramips_eth_irq, IRQF_DISABLED, dev->name, dev); if (err) return err; err = ramips_alloc_dma(priv); if (err) goto err_free_irq; ramips_hw_set_macaddr(dev->dev_addr); ramips_setup_dma(priv); ramips_fe_wr((ramips_fe_rr(RAMIPS_PDMA_GLO_CFG) & 0xff) | (RAMIPS_TX_WB_DDONE | RAMIPS_RX_DMA_EN | RAMIPS_TX_DMA_EN | RAMIPS_PDMA_SIZE_4DWORDS), RAMIPS_PDMA_GLO_CFG); ramips_fe_wr((ramips_fe_rr(RAMIPS_FE_GLO_CFG) & ~(RAMIPS_US_CYC_CNT_MASK << RAMIPS_US_CYC_CNT_SHIFT)) | ((priv->plat->sys_freq / RAMIPS_US_CYC_CNT_DIVISOR) << RAMIPS_US_CYC_CNT_SHIFT), RAMIPS_FE_GLO_CFG); tasklet_init(&priv->tx_housekeeping_tasklet, ramips_eth_tx_housekeeping, (unsigned long)dev); tasklet_init(&priv->rx_tasklet, ramips_eth_rx_hw, (unsigned long)dev); ramips_phy_start(priv); ramips_fe_wr(RAMIPS_DELAY_INIT, RAMIPS_DLY_INT_CFG); ramips_fe_wr(RAMIPS_TX_DLY_INT | RAMIPS_RX_DLY_INT, RAMIPS_FE_INT_ENABLE); ramips_fe_wr(ramips_fe_rr(RAMIPS_GDMA1_FWD_CFG) & ~(RAMIPS_GDM1_ICS_EN | RAMIPS_GDM1_TCS_EN | RAMIPS_GDM1_UCS_EN | 0xffff), RAMIPS_GDMA1_FWD_CFG); ramips_fe_wr(ramips_fe_rr(RAMIPS_CDMA_CSG_CFG) & ~(RAMIPS_ICS_GEN_EN | RAMIPS_TCS_GEN_EN | RAMIPS_UCS_GEN_EN), RAMIPS_CDMA_CSG_CFG); ramips_fe_wr(RAMIPS_PSE_FQFC_CFG_INIT, RAMIPS_PSE_FQ_CFG); ramips_fe_wr(1, RAMIPS_FE_RST_GL); ramips_fe_wr(0, RAMIPS_FE_RST_GL); netif_start_queue(dev); return 0; err_free_irq: free_irq(dev->irq, dev); return err; } static int ramips_eth_stop(struct net_device *dev) { struct raeth_priv *priv = netdev_priv(dev); ramips_fe_wr(ramips_fe_rr(RAMIPS_PDMA_GLO_CFG) & ~(RAMIPS_TX_WB_DDONE | RAMIPS_RX_DMA_EN | RAMIPS_TX_DMA_EN), RAMIPS_PDMA_GLO_CFG); /* disable all interrupts in the hw */ ramips_fe_wr(0, RAMIPS_FE_INT_ENABLE); ramips_phy_stop(priv); free_irq(dev->irq, dev); netif_stop_queue(dev); tasklet_kill(&priv->tx_housekeeping_tasklet); tasklet_kill(&priv->rx_tasklet); ramips_cleanup_dma(priv); RADEBUG("ramips_eth: stopped\n"); return 0; } static int __init ramips_eth_probe(struct net_device *dev) { struct raeth_priv *priv = netdev_priv(dev); int err; BUG_ON(!priv->plat->reset_fe); priv->plat->reset_fe(); net_srandom(jiffies); memcpy(dev->dev_addr, priv->plat->mac, ETH_ALEN); ether_setup(dev); dev->mtu = 1500; dev->watchdog_timeo = TX_TIMEOUT; spin_lock_init(&priv->page_lock); spin_lock_init(&priv->phy_lock); err = ramips_mdio_init(priv); if (err) return err; err = ramips_phy_connect(priv); if (err) goto err_mdio_cleanup; return 0; err_mdio_cleanup: ramips_mdio_cleanup(priv); return err; } static void ramips_eth_uninit(struct net_device *dev) { struct raeth_priv *re = netdev_priv(dev); ramips_phy_disconnect(re); ramips_mdio_cleanup(re); } static const struct net_device_ops ramips_eth_netdev_ops = { .ndo_init = ramips_eth_probe, .ndo_uninit = ramips_eth_uninit, .ndo_open = ramips_eth_open, .ndo_stop = ramips_eth_stop, .ndo_start_xmit = ramips_eth_hard_start_xmit, .ndo_tx_timeout = ramips_eth_timeout, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int ramips_eth_plat_probe(struct platform_device *plat) { struct raeth_priv *priv; struct ramips_eth_platform_data *data = plat->dev.platform_data; struct resource *res; int err; if (!data) { dev_err(&plat->dev, "no platform data specified\n"); return -EINVAL; } res = platform_get_resource(plat, IORESOURCE_MEM, 0); if (!res) { dev_err(&plat->dev, "no memory resource found\n"); return -ENXIO; } ramips_fe_base = ioremap_nocache(res->start, res->end - res->start + 1); if (!ramips_fe_base) return -ENOMEM; ramips_dev = alloc_etherdev(sizeof(struct raeth_priv)); if (!ramips_dev) { dev_err(&plat->dev, "alloc_etherdev failed\n"); err = -ENOMEM; goto err_unmap; } strcpy(ramips_dev->name, "eth%d"); ramips_dev->irq = platform_get_irq(plat, 0); if (ramips_dev->irq < 0) { dev_err(&plat->dev, "no IRQ resource found\n"); err = -ENXIO; goto err_free_dev; } ramips_dev->addr_len = ETH_ALEN; ramips_dev->base_addr = (unsigned long)ramips_fe_base; ramips_dev->netdev_ops = &ramips_eth_netdev_ops; priv = netdev_priv(ramips_dev); priv->netdev = ramips_dev; priv->parent = &plat->dev; priv->speed = data->speed; priv->duplex = data->duplex; priv->rx_fc = data->rx_fc; priv->tx_fc = data->tx_fc; priv->plat = data; err = register_netdev(ramips_dev); if (err) { dev_err(&plat->dev, "error bringing up device\n"); goto err_free_dev; } RADEBUG("ramips_eth: loaded\n"); return 0; err_free_dev: kfree(ramips_dev); err_unmap: iounmap(ramips_fe_base); return err; } static int ramips_eth_plat_remove(struct platform_device *plat) { unregister_netdev(ramips_dev); free_netdev(ramips_dev); RADEBUG("ramips_eth: unloaded\n"); return 0; } static struct platform_driver ramips_eth_driver = { .probe = ramips_eth_plat_probe, .remove = ramips_eth_plat_remove, .driver = { .name = "ramips_eth", .owner = THIS_MODULE, }, }; static int __init ramips_eth_init(void) { int ret; ret = rt305x_esw_init(); if (ret) return ret; ret = platform_driver_register(&ramips_eth_driver); if (ret) { printk(KERN_ERR "ramips_eth: Error registering platfom driver!\n"); goto esw_cleanup; } return 0; esw_cleanup: rt305x_esw_exit(); return ret; } static void __exit ramips_eth_cleanup(void) { platform_driver_unregister(&ramips_eth_driver); rt305x_esw_exit(); } module_init(ramips_eth_init); module_exit(ramips_eth_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Crispin "); MODULE_DESCRIPTION("ethernet driver for ramips boards");