/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef EXPORT_SYMTAB #define EXPORT_SYMTAB #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "ieee80211_proc.h" #include "rate_control.h" #include "wep.h" #include "wpa.h" #include "tkip.h" #include "wme.h" /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ static unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ static unsigned char bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ static unsigned char eapol_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e }; struct rate_control_algs { struct rate_control_algs *next; struct rate_control_ops *ops; }; static struct rate_control_algs *ieee80211_rate_ctrl_algs; static int rate_control_initialize(struct ieee80211_local *local); static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len); struct ieee80211_key_conf * ieee80211_key_data2conf(struct ieee80211_local *local, struct ieee80211_key *data) { struct ieee80211_key_conf *conf; conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC); if (conf == NULL) return NULL; conf->hw_key_idx = data->hw_key_idx; conf->alg = data->alg; conf->keylen = data->keylen; conf->force_sw_encrypt = data->force_sw_encrypt; conf->keyidx = data->keyidx; conf->default_tx_key = data->default_tx_key; conf->default_wep_only = local->default_wep_only; memcpy(conf->key, data->key, data->keylen); return conf; } static int rate_list_match(int *rate_list, int rate) { int i; if (rate_list == NULL) return 0; for (i = 0; rate_list[i] >= 0; i++) if (rate_list[i] == rate) return 1; return 0; } void ieee80211_prepare_rates(struct net_device *dev) { struct ieee80211_local *local = dev->priv; int i; for (i = 0; i < local->num_curr_rates; i++) { struct ieee80211_rate *rate = &local->curr_rates[i]; rate->flags &= ~(IEEE80211_RATE_SUPPORTED | IEEE80211_RATE_BASIC); if (local->supp_rates[local->conf.phymode]) { if (!rate_list_match(local->supp_rates [local->conf.phymode], rate->rate)) continue; } rate->flags |= IEEE80211_RATE_SUPPORTED; /* Use configured basic rate set if it is available. If not, * use defaults that are sane for most cases. */ if (local->basic_rates[local->conf.phymode]) { if (rate_list_match(local->basic_rates [local->conf.phymode], rate->rate)) rate->flags |= IEEE80211_RATE_BASIC; } else switch (local->conf.phymode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211B: if (rate->rate == 10 || rate->rate == 20) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_ATHEROS_TURBO: if (rate->rate == 120 || rate->rate == 240 || rate->rate == 480) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110) rate->flags |= IEEE80211_RATE_BASIC; break; } /* Set ERP and MANDATORY flags based on phymode */ switch (local->conf.phymode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_IEEE80211B: if (rate->rate == 10) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_ATHEROS_TURBO: break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110 || rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; if (rate->rate != 10 && rate->rate != 20 && rate->rate != 55 && rate->rate != 110) rate->flags |= IEEE80211_RATE_ERP; break; } } } static void ieee80211_key_threshold_notify(struct net_device *dev, struct ieee80211_key *key, struct sta_info *sta) { struct sk_buff *skb; struct ieee80211_msg_key_notification *msg; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_msg_key_notification)); if (skb == NULL) return; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_msg_key_notification *) skb_put(skb, sizeof(struct ieee80211_msg_key_notification)); msg->tx_rx_count = key->tx_rx_count; memcpy(msg->ifname, dev->name, IFNAMSIZ); if (sta) memcpy(msg->addr, sta->addr, ETH_ALEN); else memset(msg->addr, 0xff, ETH_ALEN); key->tx_rx_count = 0; ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_key_threshold_notification); } int ieee80211_get_hdrlen(u16 fc) { int hdrlen = 24; switch (WLAN_FC_GET_TYPE(fc)) { case WLAN_FC_TYPE_DATA: if ((fc & WLAN_FC_FROMDS) && (fc & WLAN_FC_TODS)) hdrlen = 30; /* Addr4 */ if (WLAN_FC_GET_STYPE(fc) & 0x08) hdrlen += 2; /* QoS Control Field */ break; case WLAN_FC_TYPE_CTRL: switch (WLAN_FC_GET_STYPE(fc)) { case WLAN_FC_STYPE_CTS: case WLAN_FC_STYPE_ACK: hdrlen = 10; break; default: hdrlen = 16; break; } break; } return hdrlen; } int ieee80211_get_hdrlen_from_skb(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } #ifdef IEEE80211_VERBOSE_DEBUG_FRAME_DUMP static void ieee80211_dump_frame(const char *ifname, const char *title, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc; int hdrlen; printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); if (skb->len < 4) { printk("\n"); return; } fc = le16_to_cpu(hdr->frame_control); hdrlen = ieee80211_get_hdrlen(fc); if (hdrlen > skb->len) hdrlen = skb->len; if (hdrlen >= 4) printk(" FC=0x%04x DUR=0x%04x", fc, le16_to_cpu(hdr->duration_id)); if (hdrlen >= 10) printk(" A1=" MACSTR, MAC2STR(hdr->addr1)); if (hdrlen >= 16) printk(" A2=" MACSTR, MAC2STR(hdr->addr2)); if (hdrlen >= 24) printk(" A3=" MACSTR, MAC2STR(hdr->addr3)); if (hdrlen >= 30) printk(" A4=" MACSTR, MAC2STR(hdr->addr4)); printk("\n"); } #else /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */ static inline void ieee80211_dump_frame(const char *ifname, const char *title, struct sk_buff *skb) { } #endif /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */ static int ieee80211_is_eapol(struct sk_buff *skb) { struct ieee80211_hdr *hdr; u16 fc; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) return 0; hdrlen = ieee80211_get_hdrlen(fc); if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) && memcmp(skb->data + hdrlen, eapol_header, sizeof(eapol_header)) == 0)) return 1; return 0; } static ieee80211_txrx_result ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) { struct rate_control_extra extra; memset(&extra, 0, sizeof(extra)); extra.mgmt_data = tx->sdata && tx->sdata->type == IEEE80211_SUB_IF_TYPE_MGMT; extra.ethertype = tx->ethertype; extra.startidx = 0; extra.endidx = tx->local->num_curr_rates; tx->u.tx.rate = rate_control_get_rate(tx->dev, tx->skb, &extra); if (unlikely(extra.probe != NULL)) { tx->u.tx.control->rate_ctrl_probe = 1; tx->u.tx.probe_last_frag = 1; // tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; tx->u.tx.rate = extra.probe; } else { // tx->u.tx.control->alt_retry_rate = -1; } if (!tx->u.tx.rate) return TXRX_DROP; if (tx->local->conf.phymode == MODE_IEEE80211G && tx->local->cts_protect_erp_frames && tx->fragmented && extra.nonerp) { tx->u.tx.last_frag_rate = tx->u.tx.rate; tx->u.tx.last_frag_rateidx = extra.rateidx; tx->u.tx.probe_last_frag = extra.probe ? 1 : 0; tx->u.tx.rate = extra.nonerp; // tx->u.tx.control->rateidx = extra.nonerp_idx; tx->u.tx.control->rate_ctrl_probe = 0; } else { tx->u.tx.last_frag_rate = tx->u.tx.rate; tx->u.tx.last_frag_rateidx = extra.rateidx; // tx->u.tx.control->rateidx = extra.rateidx; } tx->u.tx.control->tx_rate = tx->u.tx.rate->val; if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && tx->local->short_preamble && (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { tx->u.tx.short_preamble = 1; tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) { if (tx->sta) tx->u.tx.control->key_idx = tx->sta->key_idx_compression; else tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID; if (unlikely(tx->u.tx.control->do_not_encrypt)) tx->key = NULL; else if (tx->sta && tx->sta->key) tx->key = tx->sta->key; else if (tx->sdata->default_key) tx->key = tx->sdata->default_key; else if (tx->sdata->drop_unencrypted && !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); return TXRX_DROP; } else tx->key = NULL; if (tx->key) { tx->key->tx_rx_count++; if (unlikely(tx->local->key_tx_rx_threshold && tx->key->tx_rx_count > tx->local->key_tx_rx_threshold)) { ieee80211_key_threshold_notify(tx->dev, tx->key, tx->sta); } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; size_t hdrlen, per_fragm, num_fragm, payload_len, left; struct sk_buff **frags, *first, *frag; int i; u8 *pos; int frag_threshold = tx->local->fragmentation_threshold; if (!tx->fragmented) return TXRX_CONTINUE; first = tx->skb; hdrlen = ieee80211_get_hdrlen(tx->fc); payload_len = first->len - hdrlen; per_fragm = frag_threshold - hdrlen - 4 /* FCS */; num_fragm = (payload_len + per_fragm - 1) / per_fragm; frags = (struct sk_buff **) kmalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); if (frags == NULL) goto fail; memset(frags, 0, num_fragm * sizeof(struct sk_buff *)); hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREFRAG); pos = first->data + hdrlen + per_fragm; left = payload_len - per_fragm; for (i = 0; i < num_fragm - 1; i++) { struct ieee80211_hdr *fhdr; size_t copylen; if (left <= 0) goto fail; /* reserve enough extra head and tail room for possible * encryption */ #define IEEE80211_ENCRYPT_HEADROOM 8 #define IEEE80211_ENCRYPT_TAILROOM 12 frag = frags[i] = dev_alloc_skb(frag_threshold + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM); if (!frag) goto fail; /* Make sure that all fragments use the same priority so * that they end up using the same TX queue */ frag->priority = first->priority; skb_reserve(frag, IEEE80211_ENCRYPT_HEADROOM); fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); memcpy(fhdr, first->data, hdrlen); if (i == num_fragm - 2) fhdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREFRAG); fhdr->seq_ctrl = cpu_to_le16(i + 1); copylen = left > per_fragm ? per_fragm : left; memcpy(skb_put(frag, copylen), pos, copylen); pos += copylen; left -= copylen; } skb_trim(first, hdrlen + per_fragm); tx->u.tx.num_extra_frag = num_fragm - 1; tx->u.tx.extra_frag = frags; return TXRX_CONTINUE; fail: printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); if (frags) { for (i = 0; i < num_fragm - 1; i++) if (frags[i]) dev_kfree_skb(frags[i]); kfree(frags); } I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); return TXRX_DROP; } static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb) { if (tx->key->force_sw_encrypt || tx->local->conf.sw_encrypt) { if (ieee80211_wep_encrypt(tx->local, skb, tx->key)) return -1; } else { tx->u.tx.control->key_idx = tx->key->hw_key_idx; if (tx->local->hw->wep_include_iv) { if (ieee80211_wep_add_iv(tx->local, skb, tx->key) == NULL) return -1; } } return 0; } void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; hdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP); if (tx->u.tx.extra_frag) { struct ieee80211_hdr *fhdr; int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { fhdr = (struct ieee80211_hdr *) tx->u.tx.extra_frag[i]->data; fhdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP); } } } static ieee80211_txrx_result ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; u16 fc; fc = le16_to_cpu(hdr->frame_control); if (!tx->key || tx->key->alg != ALG_WEP || (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA && (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT || WLAN_FC_GET_STYPE(fc) != WLAN_FC_STYPE_AUTH))) return TXRX_CONTINUE; tx->u.tx.control->iv_len = WEP_IV_LEN; tx->u.tx.control->icv_len = WEP_ICV_LEN; ieee80211_tx_set_iswep(tx); if (wep_encrypt_skb(tx, tx->skb) < 0) { I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); return TXRX_DROP; } if (tx->u.tx.extra_frag) { int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) { I802_DEBUG_INC(tx->local-> tx_handlers_drop_wep); return TXRX_DROP; } } } return TXRX_CONTINUE; } static inline int ceiling_div(int dividend, int divisor) { return ((dividend + divisor - 1) / divisor); } static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len, int rate, int erp, int short_preamble) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * ceiling_div() operations. */ if (local->conf.phymode == MODE_IEEE80211A || erp || local->conf.phymode == MODE_ATHEROS_TURBO) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 17.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ /* FIX: Atheros Turbo may have different (shorter) duration? */ dur = 16; /* SIFS + signal ext */ dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */ dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */ dur += 4 * ceiling_div((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 ms or 24 ms with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += ceiling_div(8 * (len + 4) * 10, rate); } return dur; } static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i; struct ieee80211_rate *txrate = tx->u.tx.rate; struct ieee80211_local *local = tx->local; erp = txrate->flags & IEEE80211_RATE_ERP; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ if (WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_CTRL) { /* TODO: These control frames are not currently sent by * 80211.o, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return 32768; if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; mrate = 10; /* use 1 Mbps if everything fails */ for (i = 0; i < local->num_curr_rates; i++) { struct ieee80211_rate *r = &local->curr_rates[i]; if (r->rate > txrate->rate) break; if (IEEE80211_RATE_MODULATION(txrate->flags) != IEEE80211_RATE_MODULATION(r->flags)) continue; if (r->flags & IEEE80211_RATE_BASIC) rate = r->rate; else if (r->flags & IEEE80211_RATE_MANDATORY) mrate = r->rate; } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = mrate; } /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(local, 10, rate, erp, local->short_preamble); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(local, next_frag_len, txrate->rate, erp, local->short_preamble); } return dur; } static ieee80211_txrx_result ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; u16 dur; struct ieee80211_tx_control *control = tx->u.tx.control; if (!MULTICAST_ADDR(hdr->addr1)) { if (tx->skb->len >= tx->local->rts_threshold && tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) { control->use_rts_cts = 1; control->retry_limit = tx->local->long_retry_limit; } else { control->retry_limit = tx->local->short_retry_limit; } } else { control->retry_limit = 1; } if (tx->fragmented) { /* Do not use multiple retry rates when sending fragmented * frames. * TODO: The last fragment could still use multiple retry * rates. */ // control->alt_retry_rate = -1; } /* Use CTS protection for unicast frames sent using extended rates if * there are associated non-ERP stations and RTS/CTS is not configured * for the frame. */ if (tx->local->conf.phymode == MODE_IEEE80211G && (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && tx->u.tx.unicast && tx->local->cts_protect_erp_frames && !control->use_rts_cts) control->use_cts_protect = 1; /* Setup duration field for the first fragment of the frame. Duration * for remaining fragments will be updated when they are being sent * to low-level driver in ieee80211_tx(). */ dur = ieee80211_duration(tx, MULTICAST_ADDR(hdr->addr1), tx->fragmented ? tx->u.tx.extra_frag[0]->len : 0); hdr->duration_id = cpu_to_le16(dur); if (control->use_rts_cts || control->use_cts_protect) { struct ieee80211_rate *rate; int erp = tx->u.tx.rate->flags & IEEE80211_RATE_ERP; /* Do not use multiple retry rates when using RTS/CTS */ // control->alt_retry_rate = -1; /* Use min(data rate, max base rate) as CTS/RTS rate */ rate = tx->u.tx.rate; while (rate > tx->local->curr_rates && !(rate->flags & IEEE80211_RATE_BASIC)) rate--; if (control->use_rts_cts) dur += ieee80211_frame_duration(tx->local, 10, rate->rate, erp, tx->local-> short_preamble); dur += ieee80211_frame_duration(tx->local, tx->skb->len, tx->u.tx.rate->rate, erp, tx->u.tx.short_preamble); control->rts_cts_duration = dur; control->rts_cts_rate = rate->val; } if (tx->sta) { tx->sta->tx_packets++; tx->sta->tx_fragments++; tx->sta->tx_bytes += tx->skb->len; if (tx->u.tx.extra_frag) { int i; tx->sta->tx_fragments += tx->u.tx.num_extra_frag; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { tx->sta->tx_bytes += tx->u.tx.extra_frag[i]->len; } } } tx->local->scan.txrx_count++; return TXRX_CONTINUE; } static void ieee80211_rate_limit(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; if (local->rate_limit) { local->rate_limit_bucket += local->rate_limit; if (local->rate_limit_bucket > local->rate_limit_burst) local->rate_limit_bucket = local->rate_limit_burst; local->rate_limit_timer.expires = jiffies + HZ; add_timer(&local->rate_limit_timer); } } static ieee80211_txrx_result ieee80211_tx_h_rate_limit(struct ieee80211_txrx_data *tx) { if (likely(!tx->local->rate_limit || tx->u.tx.unicast)) return TXRX_CONTINUE; /* rate limit */ if (tx->local->rate_limit_bucket) { tx->local->rate_limit_bucket--; return TXRX_CONTINUE; } I802_DEBUG_INC(tx->local->tx_handlers_drop_rate_limit); return TXRX_DROP; } static ieee80211_txrx_result ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) { #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG struct sk_buff *skb = tx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ u32 sta_flags; if (unlikely(tx->local->sta_scanning != 0) && (WLAN_FC_GET_TYPE(tx->fc) != WLAN_FC_TYPE_MGMT || WLAN_FC_GET_STYPE(tx->fc) != WLAN_FC_STYPE_PROBE_REQ)) return TXRX_DROP; if (tx->u.tx.ps_buffered) return TXRX_CONTINUE; sta_flags = tx->sta ? tx->sta->flags : 0; if (likely(tx->u.tx.unicast)) { if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && tx->local->conf.mode != IW_MODE_ADHOC && WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA)) { #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: dropped data frame to not " "associated station " MACSTR "\n", tx->dev->name, MAC2STR(hdr->addr1)); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TXRX_DROP; } } else { if (unlikely(WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA && tx->local->num_sta == 0 && !tx->local->allow_broadcast_always && tx->local->conf.mode != IW_MODE_ADHOC)) { /* * No associated STAs - no need to send multicast * frames. */ return TXRX_DROP; } return TXRX_CONTINUE; } if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x && !(sta_flags & WLAN_STA_AUTHORIZED))) { #ifdef CONFIG_IEEE80211_DEBUG struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; printk(KERN_DEBUG "%s: dropped frame to " MACSTR " (unauthorized port)\n", tx->dev->name, MAC2STR(hdr->addr1)); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); return TXRX_DROP; } return TXRX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct list_head *ptr; spin_lock_bh(&local->sub_if_lock); list_for_each(ptr, &local->sub_if_list) { struct ieee80211_if_norm *norm; struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->dev == local->mdev || sdata->type != IEEE80211_SUB_IF_TYPE_NORM) continue; norm = &sdata->u.norm; skb = skb_dequeue(&norm->ps_bc_buf); if (skb) { purged++; dev_kfree_skb(skb); } total += skb_queue_len(&norm->ps_bc_buf); } spin_unlock_bh(&local->sub_if_lock); spin_lock_bh(&local->sta_lock); list_for_each(ptr, &local->sta_list) { struct sta_info *sta = list_entry(ptr, struct sta_info, list); skb = skb_dequeue(&sta->ps_tx_buf); if (skb) { purged++; dev_kfree_skb(skb); } total += skb_queue_len(&sta->ps_tx_buf); } spin_unlock_bh(&local->sta_lock); local->total_ps_buffered = total; printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", local->mdev->name, purged); } static inline ieee80211_txrx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) { /* broadcast/multicast frame */ /* If any of the associated stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame */ if (tx->local->hw->host_broadcast_ps_buffering && tx->sdata->type != IEEE80211_SUB_IF_TYPE_WDS && tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && !(tx->fc & WLAN_FC_ORDER)) { if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: BC TX buffer full - " "dropping the oldest frame\n", tx->dev->name); } dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); return TXRX_QUEUED; } return TXRX_CONTINUE; } static inline ieee80211_txrx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) { struct sta_info *sta = tx->sta; if (unlikely(!sta || (WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_MGMT && WLAN_FC_GET_STYPE(tx->fc) == WLAN_FC_STYPE_PROBE_RESP))) return TXRX_CONTINUE; if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { struct ieee80211_tx_packet_data *pkt_data; #ifdef IEEE80211_VERBOSE_DEBUG_PS printk(KERN_DEBUG "STA " MACSTR " aid %d: PS buffer (entries " "before %d)\n", MAC2STR(sta->addr), sta->aid, skb_queue_len(&sta->ps_tx_buf)); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ sta->flags |= WLAN_STA_TIM; if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); if (net_ratelimit()) { printk(KERN_DEBUG "%s: STA " MACSTR " TX " "buffer full - dropping oldest frame\n", tx->dev->name, MAC2STR(sta->addr)); } dev_kfree_skb(old); } else tx->local->total_ps_buffered++; /* Queue frame to be sent after STA sends an PS Poll frame */ if (skb_queue_empty(&sta->ps_tx_buf) && tx->local->hw->set_tim) tx->local->hw->set_tim(tx->dev, sta->aid, 1); pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; pkt_data->jiffies = jiffies; skb_queue_tail(&sta->ps_tx_buf, tx->skb); return TXRX_QUEUED; } #ifdef IEEE80211_VERBOSE_DEBUG_PS else if (unlikely(sta->flags & WLAN_STA_PS)) { printk(KERN_DEBUG "%s: STA " MACSTR " in PS mode, but pspoll " "set -> send frame\n", tx->dev->name, MAC2STR(sta->addr)); } #endif /* IEEE80211_VERBOSE_DEBUG_PS */ sta->pspoll = 0; return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) { if (unlikely(tx->u.tx.ps_buffered)) return TXRX_CONTINUE; if (tx->u.tx.unicast) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } static void inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, struct sk_buff *skb, struct net_device *dev, struct ieee80211_tx_control *control) { struct ieee80211_local *local = dev->priv; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_packet_data *pkt_data; int hdrlen; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->dev = pkt_data->sdata->dev; /* use original interface */ tx->local = local; tx->sdata = pkt_data->sdata; tx->sta = sta_info_get(local, hdr->addr1); tx->fc = le16_to_cpu(hdr->frame_control); control->power_level = local->conf.power_level; tx->u.tx.control = control; tx->u.tx.unicast = !MULTICAST_ADDR(hdr->addr1); control->no_ack = MULTICAST_ADDR(hdr->addr1); tx->fragmented = local->fragmentation_threshold < IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast && skb->len + 4 /* FCS */ > local->fragmentation_threshold && (local->hw->set_frag_threshold == NULL); if (tx->sta == NULL) control->clear_dst_mask = 1; else if (tx->sta->clear_dst_mask) { control->clear_dst_mask = 1; tx->sta->clear_dst_mask = 0; } control->antenna_sel = local->conf.antenna_sel; if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta) control->antenna_sel = tx->sta->antenna_sel; hdrlen = ieee80211_get_hdrlen(tx->fc); if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; tx->ethertype = (pos[0] << 8) | pos[1]; } } static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, struct ieee80211_tx_control *control, int mgmt) { struct ieee80211_local *local = dev->priv; struct sta_info *sta; ieee80211_tx_handler *handler; struct ieee80211_txrx_data tx; ieee80211_txrx_result res = TXRX_DROP; int ret, i; if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return 0; } ieee80211_tx_prepare(&tx, skb, dev, control); sta = tx.sta; tx.u.tx.mgmt_interface = mgmt; for (handler = local->tx_handlers; *handler != NULL; handler++) { res = (*handler)(&tx); if (res != TXRX_CONTINUE) break; } skb = tx.skb; /* handlers are allowed to change skb */ if (sta) sta_info_release(local, sta); if (unlikely(res == TXRX_DROP)) { I802_DEBUG_INC(local->tx_handlers_drop); goto drop; } if (unlikely(res == TXRX_QUEUED)) { I802_DEBUG_INC(local->tx_handlers_queued); return 0; } ieee80211_dump_frame(dev->name, "TX to low-level driver", skb); ret = local->hw->tx(dev, skb, control); #ifdef IEEE80211_LEDS if (!ret && local->tx_led_counter++ == 0) { ieee80211_tx_led(1, dev); } #endif /* IEEE80211_LEDS */ if (tx.u.tx.extra_frag) { if (ret > 0) { /* Must free all fragments and return 0 since skb data * has been fragmented into multiple buffers. * TODO: could free extra fragments and restore skb to * the original form since the data is still there and * then return nonzero so that Linux netif would * retry. */ goto drop; } skb = NULL; /* skb is now owned by low-level driver */ control->use_rts_cts = 0; control->use_cts_protect = 0; control->clear_dst_mask = 0; for (i = 0; i < tx.u.tx.num_extra_frag; i++) { int next_len, dur; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx.u.tx.extra_frag[i]->data; if (i + 1 < tx.u.tx.num_extra_frag) next_len = tx.u.tx.extra_frag[i + 1]->len; else { next_len = 0; tx.u.tx.rate = tx.u.tx.last_frag_rate; tx.u.tx.control->tx_rate = tx.u.tx.rate->val; // tx.u.tx.control->rateidx = // tx.u.tx.last_frag_rateidx; tx.u.tx.control->rate_ctrl_probe = tx.u.tx.probe_last_frag; } dur = ieee80211_duration(&tx, 0, next_len); hdr->duration_id = cpu_to_le16(dur); ieee80211_dump_frame(dev->name, "TX to low-level driver", skb); ret = local->hw->tx(dev, tx.u.tx.extra_frag[i], control); if (ret > 0) goto drop; #ifdef IEEE80211_LEDS if (local->tx_led_counter++ == 0) { ieee80211_tx_led(1, dev); } #endif /* IEEE80211_LEDS */ tx.u.tx.extra_frag[i] = NULL; } kfree(tx.u.tx.extra_frag); } if (ret == -1) ret = 0; return ret; drop: if (skb) dev_kfree_skb(skb); for (i = 0; i < tx.u.tx.num_extra_frag; i++) if (tx.u.tx.extra_frag[i]) dev_kfree_skb(tx.u.tx.extra_frag[i]); kfree(tx.u.tx.extra_frag); return 0; } static int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_tx_control control; struct ieee80211_tx_packet_data *pkt_data; struct ieee80211_sub_if_data *sdata; int ret = 1; sdata = IEEE80211_DEV_TO_SUB_IF(dev); /* * copy control out of the skb so other people can use skb->cb */ pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; if (unlikely(pkt_data->magic != IEEE80211_CB_MAGIC)) { printk(KERN_WARNING "%s: Someone messed with our skb->cb\n", dev->name); dev_kfree_skb(skb); return 0; } memcpy(&control, &pkt_data->control, sizeof(struct ieee80211_tx_control)); ret = ieee80211_tx(dev, skb, &control, pkt_data->sdata->type == IEEE80211_SUB_IF_TYPE_MGMT); return ret; } /** * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type * subinterfaces (wlan#, WDS, and VLAN interfaces) * @skb: packet to be sent * @dev: incoming interface * * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will * not be freed, and caller is responsible for either retrying later or freeing * skb). * * This function takes in an Ethernet header and encapsulates it with suitable * IEEE 802.11 header based on which interface the packet is coming in. The * encapsulated packet will then be passed to master interface, wlan#.11, for * transmission (through low-level driver). */ static int ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = (struct ieee80211_local *) dev->priv; struct ieee80211_tx_packet_data *pkt_data; struct ieee80211_sub_if_data *sdata; int ret = 1, head_need; u16 ethertype, hdrlen, fc; struct ieee80211_hdr hdr; u8 *encaps_data; int encaps_len, skip_header_bytes; int nh_pos, h_pos, no_encrypt = 0; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(skb->len < ETH_HLEN)) { printk(KERN_DEBUG "%s: short skb (len=%d)\n", dev->name, skb->len); ret = 0; goto fail; } nh_pos = skb->nh.raw - skb->data; h_pos = skb->h.raw - skb->data; /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; /* TODO: handling for 802.1x authorized/unauthorized port */ fc = (WLAN_FC_TYPE_DATA << 2) | (WLAN_FC_STYPE_DATA << 4); if (likely(sdata->type == IEEE80211_SUB_IF_TYPE_NORM || sdata->type == IEEE80211_SUB_IF_TYPE_VLAN)) { if (local->conf.mode == IW_MODE_MASTER) { fc |= WLAN_FC_FROMDS; /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); } else if (local->conf.mode == IW_MODE_INFRA) { fc |= WLAN_FC_TODS; /* BSSID SA DA */ memcpy(hdr.addr1, local->bssid, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); } else if (local->conf.mode == IW_MODE_ADHOC) { /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, local->bssid, ETH_ALEN); } hdrlen = 24; } else if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS) { fc |= WLAN_FC_FROMDS | WLAN_FC_TODS; /* RA TA DA SA */ memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) { if (local->conf.mode == IW_MODE_INFRA) { fc |= WLAN_FC_TODS; /* BSSID SA DA */ memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); } else { /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); } hdrlen = 24; } else { ret = 0; goto fail; } /* receiver is QoS enabled, use a QoS type frame */ sta = sta_info_get(local, hdr.addr1); if (sta) { if (sta->flags & WLAN_STA_WME) { fc |= WLAN_FC_STYPE_QOS_DATA << 4; hdrlen += 2; } sta_info_release(local, sta); } hdr.frame_control = cpu_to_le16(fc); hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= 0x600) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); nh_pos -= skip_header_bytes; h_pos -= skip_header_bytes; /* TODO: implement support for fragments so that there is no need to * reallocate and copy payload; it might be enough to support one * extra fragment that would be copied in the beginning of the frame * data.. anyway, it would be nice to include this into skb structure * somehow * * There are few options for this: * use skb->cb as an extra space for 802.11 header * allocate new buffer if not enough headroom * make sure that there is enough headroom in every skb by increasing * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and * alloc_skb() (net/core/skbuff.c) */ head_need = hdrlen + encaps_len + (local->hw->extra_hdr_room ? 2 : 0); head_need -= skb_headroom(skb); /* We are going to modify skb data, so make a copy of it if happens to * be cloned. This could happen, e.g., with Linux bridge code passing * us broadcast frames. */ if (head_need > 0 || skb_cloned(skb)) { #if 0 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " "of headroom\n", dev->name, head_need); #endif if (skb_cloned(skb)) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else I802_DEBUG_INC(local->tx_expand_skb_head); /* Since we have to reallocate the buffer, make sure that there * is enough room for possible WEP IV/ICV and TKIP (8 bytes * before payload and 12 after). */ if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), 12, GFP_ATOMIC)) { printk(KERN_DEBUG "%s: failed to reallocate TX buffer" "\n", dev->name); goto fail; } } if (encaps_data) { memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); nh_pos += encaps_len; h_pos += encaps_len; } memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); nh_pos += hdrlen; h_pos += hdrlen; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); pkt_data->magic = IEEE80211_CB_MAGIC; pkt_data->sdata = sdata; pkt_data->control.do_not_encrypt = no_encrypt; skb->dev = sdata->master; sdata->stats.tx_packets++; sdata->stats.tx_bytes += skb->len; /* Update skb pointers to various headers since this modified frame * is going to go through Linux networking code that may potentially * need things like pointer to IP header. */ skb->mac.raw = skb->data; skb->nh.raw = skb->data + nh_pos; skb->h.raw = skb->data + h_pos; dev_queue_xmit(skb); return 0; fail: if (!ret) dev_kfree_skb(skb); return ret; } /* * This is the transmit routine for the 802.11 type interfaces * called by upper layers of the linux networking * stack when it has a frame to transmit */ static int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_packet_data *pkt_data; struct ieee80211_hdr *hdr; u16 fc; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (skb->len < 10) { dev_kfree_skb(skb); return 0; } hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); pkt_data->magic = IEEE80211_CB_MAGIC; pkt_data->sdata = sdata; if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT && WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PROBE_RESP) pkt_data->control.pkt_type = PKT_PROBE_RESP; skb->priority = 20; /* use hardcode priority for mgmt TX queue */ skb->dev = sdata->master; /* * We're using the protocol field of the the frame control header * to request TX callback for hostapd. BIT(1) is checked. */ if ((fc & BIT(1)) == BIT(1)) { pkt_data->control.req_tx_status = 1; fc &= ~BIT(1); hdr->frame_control = cpu_to_le16(fc); } pkt_data->control.do_not_encrypt = !(fc & WLAN_FC_ISWEP); sdata->stats.tx_packets++; sdata->stats.tx_bytes += skb->len; dev_queue_xmit(skb); return 0; } static void ieee80211_beacon_add_tim(struct ieee80211_local *local, struct ieee80211_if_norm *bss, struct sk_buff *skb) { u8 *pos, *tim; int aid0 = 0; int i, num_bits = 0, n1, n2; u8 bitmap[251]; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ if (atomic_read(&bss->num_sta_ps) > 0 && bss->max_aid > 0) { memset(bitmap, 0, sizeof(bitmap)); spin_lock_bh(&local->sta_lock); for (i = 0; i < bss->max_aid; i++) { if (bss->sta_aid[i] && (!skb_queue_empty(&bss->sta_aid[i]->ps_tx_buf) || !skb_queue_empty(&bss->sta_aid[i]->tx_filtered))) { bitmap[(i + 1) / 8] |= 1 << (i + 1) % 8; num_bits++; } } spin_unlock_bh(&local->sta_lock); } if (bss->dtim_count == 0) bss->dtim_count = bss->dtim_period - 1; else bss->dtim_count--; tim = pos = (u8 *) skb_put(skb, 6); *pos++ = WLAN_EID_TIM; *pos++ = 4; *pos++ = bss->dtim_count; *pos++ = bss->dtim_period; if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) { aid0 = 1; } if (num_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < sizeof(bitmap); i++) { if (bitmap[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = sizeof(bitmap) - 1; i >= n1; i--) { if (bitmap[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | (aid0 ? 1 : 0); /* Part Virt Bitmap */ memcpy(pos, bitmap + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; skb_put(skb, n2 - n1); } else { *pos++ = aid0 ? 1 : 0; /* Bitmap control */ *pos++ = 0; /* Part Virt Bitmap */ } } struct sk_buff * ieee80211_beacon_get(struct net_device *dev, int bss_idx, struct ieee80211_tx_control *control) { struct ieee80211_local *local = dev->priv; struct sk_buff *skb; struct net_device *bdev; struct ieee80211_sub_if_data *sdata = NULL; struct ieee80211_if_norm *norm = NULL; struct ieee80211_rate *rate; struct rate_control_extra extra; u8 *b_head, *b_tail; int bh_len, bt_len; spin_lock_bh(&local->sub_if_lock); if (bss_idx < 0 || bss_idx >= local->bss_dev_count) bdev = NULL; else { bdev = local->bss_devs[bss_idx]; sdata = IEEE80211_DEV_TO_SUB_IF(bdev); norm = &sdata->u.norm; } spin_unlock_bh(&local->sub_if_lock); if (bdev == NULL || norm == NULL || norm->beacon_head == NULL) { #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "no beacon data avail for idx=%d " "(%s)\n", bss_idx, bdev ? bdev->name : "N/A"); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ return NULL; } /* Assume we are generating the normal beacon locally */ b_head = norm->beacon_head; b_tail = norm->beacon_tail; bh_len = norm->beacon_head_len; bt_len = norm->beacon_tail_len; skb = dev_alloc_skb(bh_len + bt_len + 256 /* maximum TIM len */); if (!skb) return NULL; memcpy(skb_put(skb, bh_len), b_head, bh_len); ieee80211_beacon_add_tim(local, norm, skb); if (b_tail) { memcpy(skb_put(skb, bt_len), b_tail, bt_len); } memset(&extra, 0, sizeof(extra)); extra.endidx = local->num_curr_rates; rate = rate_control_get_rate(dev, skb, &extra); if (rate == NULL) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " "found\n", dev->name); } dev_kfree_skb(skb); return NULL; } control->tx_rate = (local->short_preamble && (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? rate->val2 : rate->val; control->antenna_sel = local->conf.antenna_sel; control->power_level = local->conf.power_level; control->no_ack = 1; control->retry_limit = 1; control->rts_cts_duration = 0; control->clear_dst_mask = 1; norm->num_beacons++; return skb; } struct sk_buff * ieee80211_get_buffered_bc(struct net_device *dev, int bss_idx, struct ieee80211_tx_control *control) { struct ieee80211_local *local = dev->priv; struct sk_buff *skb; struct sta_info *sta; ieee80211_tx_handler *handler; struct ieee80211_txrx_data tx; ieee80211_txrx_result res = TXRX_DROP; struct net_device *bdev; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_norm *bss; spin_lock_bh(&local->sub_if_lock); if (bss_idx < 0 || bss_idx >= local->bss_dev_count) { bdev = NULL; bss = NULL; } else { bdev = local->bss_devs[bss_idx]; sdata = IEEE80211_DEV_TO_SUB_IF(bdev); bss = &sdata->u.norm; } spin_unlock_bh(&local->sub_if_lock); if (bdev == NULL || bss == NULL || bss->beacon_head == NULL) return NULL; if (bss->dtim_count != 0) return NULL; /* send buffered bc/mc only after DTIM beacon */ skb = skb_dequeue(&bss->ps_bc_buf); memset(control, 0, sizeof(*control)); if (skb == NULL) return NULL; local->total_ps_buffered--; if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set MoreData * flag in IEEE 802.11 header to inform PS STAs */ hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA); } ieee80211_tx_prepare(&tx, skb, dev, control); sta = tx.sta; tx.u.tx.ps_buffered = 1; for (handler = local->tx_handlers; *handler != NULL; handler++) { res = (*handler)(&tx); if (res == TXRX_DROP || res == TXRX_QUEUED) break; } if (res == TXRX_DROP) { I802_DEBUG_INC(local->tx_handlers_drop); dev_kfree_skb(skb); skb = NULL; } else if (res == TXRX_QUEUED) { I802_DEBUG_INC(local->tx_handlers_queued); skb = NULL; } if (sta) sta_info_release(local, sta); return skb; } int ieee80211_hw_config(struct net_device *dev) { struct ieee80211_local *local = dev->priv; int i, ret = 0; #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d mode=%d " "phymode=%d\n", local->conf.channel, local->conf.freq, local->conf.mode, local->conf.phymode); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ if (local->hw->config) ret = local->hw->config(dev, &local->conf); for (i = 0; i < local->hw->num_modes; i++) { struct ieee80211_hw_modes *mode = &local->hw->modes[i]; if (mode->mode == local->conf.phymode) { if (local->curr_rates != mode->rates) { rate_control_clear(local); } local->curr_rates = mode->rates; local->num_curr_rates = mode->num_rates; ieee80211_prepare_rates(dev); break; } } return ret; } struct ieee80211_conf *ieee80211_get_hw_conf(struct net_device *dev) { struct ieee80211_local *local = dev->priv; return &local->conf; } static int ieee80211_change_mtu(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.3 frames. */ if (new_mtu < 256 || new_mtu > 2304 - 24 - 6) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.11 frames. */ if (new_mtu < 256 || new_mtu > 2304) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } static void ieee80211_tx_timeout(struct net_device *dev) { struct ieee80211_local *local = dev->priv; printk(KERN_WARNING "%s: resetting interface.\n", dev->name); if (local->hw->reset(dev)) printk(KERN_ERR "%s: failed to reset interface.\n", dev->name); else netif_wake_queue(dev); } static int ieee80211_set_mac_address(struct net_device *dev, void *addr) { struct ieee80211_local *local = dev->priv; struct sockaddr *a = addr; struct list_head *ptr; int res; if (!local->hw->set_mac_address) return -EOPNOTSUPP; res = local->hw->set_mac_address(dev, addr); if (res) return res; list_for_each(ptr, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); memcpy(sdata->dev->dev_addr, a->sa_data, ETH_ALEN); } return 0; } static struct net_device_stats *ieee80211_get_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &(sdata->stats); } static int ieee80211_open(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = dev->priv; int res; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (local->open_count == 0) { res = local->hw->open(sdata->master); if (res) return res; ieee80211_init_scan(sdata->master); } local->open_count++; netif_start_queue(dev); return 0; } static int ieee80211_stop(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = dev->priv; int res; sdata = IEEE80211_DEV_TO_SUB_IF(dev); netif_stop_queue(dev); local->open_count--; if (local->open_count == 0) { ieee80211_stop_scan(sdata->master); res = local->hw->stop(sdata->master); if (res) return res; } return 0; } static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb->mac.raw + 10, ETH_ALEN); /* addr2 */ return ETH_ALEN; } static struct net_device * ieee80211_get_wds_dev(struct ieee80211_local *local, u8 *addr) { struct list_head *ptr; list_for_each(ptr, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS && memcmp(addr, sdata->u.wds.remote_addr, ETH_ALEN) == 0) return sdata->dev; } return NULL; } static struct net_device * ieee80211_own_bssid(struct ieee80211_local *local, u8 *addr) { int i; struct net_device *dev = NULL; spin_lock_bh(&local->sub_if_lock); for (i = 0; i < local->bss_dev_count; i++) { if ((memcmp(local->bss_devs[i]->dev_addr, addr, ETH_ALEN) == 0) ) { dev = local->bss_devs[i]; break; } } spin_unlock_bh(&local->sub_if_lock); return dev; } static struct net_device * ieee80211_sta_bssid(struct ieee80211_local *local, u8 *addr, u8 *a1, int *sta_multicast) { struct list_head *ptr; int multicast; u8 *own_addr = local->mdev->dev_addr; multicast = a1[0] & 0x01; /* Try O(1) lookup for a common case of only one AP being used. */ if (own_addr[0] == a1[0] && own_addr[1] == a1[1] && own_addr[2] == a1[2]) { int index = (((int) a1[3] << 16) | ((int) a1[4] << 8) | a1[5]) - (((int) own_addr[3] << 16) | ((int) own_addr[4] << 8) | own_addr[5]); if (index >= 0 && index < local->conf.bss_count && local->sta_devs[index]) { struct net_device *dev = local->sta_devs[index]; struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0) { *sta_multicast = multicast; return dev; } } } if (!multicast) return NULL; /* Could not find station interface, resort to O(n) lookup. */ list_for_each(ptr, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->type != IEEE80211_SUB_IF_TYPE_STA) continue; if (!multicast && memcmp(a1, sdata->dev->dev_addr, ETH_ALEN) != 0) continue; if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0 || (memcmp(addr, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0 && local->conf.mode == IW_MODE_ADHOC)) { *sta_multicast = multicast; return sdata->dev; } } return NULL; } static int ieee80211_own_addr(struct net_device *dev, u8 *addr) { struct ieee80211_local *local = dev->priv; u8 *own = dev->dev_addr; int index; /* Optimization: assume that BSSID mask does not change for first * three octets. */ if (own[0] != addr[0] || own[1] != addr[1] || own[2] != addr[2]) return 0; index = (((int) addr[3] << 16) | ((int) addr[4] << 8) | addr[5]) - (((int) own[3] << 16) | ((int) own[4] << 8) | own[5]); if (index >= 0 && index < local->conf.bss_count && local->sta_devs[index]) return 1; return 0; } static ieee80211_txrx_result ieee80211_rx_h_data(struct ieee80211_txrx_data *rx) { struct net_device *dev = rx->dev; struct ieee80211_local *local = rx->local; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; u16 fc, hdrlen, ethertype; u8 *payload; u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; struct sk_buff *skb = rx->skb, *skb2; struct ieee80211_sub_if_data *sdata; fc = rx->fc; if (unlikely(WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA)) return TXRX_CONTINUE; if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) return TXRX_DROP; hdrlen = ieee80211_get_hdrlen(fc); /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) { case WLAN_FC_TODS: /* BSSID SA DA */ memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); if (unlikely(local->conf.mode != IW_MODE_MASTER || !ieee80211_own_bssid(local, hdr->addr1))) { printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID=" MACSTR " SA=" MACSTR " DA=" MACSTR ")\n", dev->name, MAC2STR(hdr->addr1), MAC2STR(hdr->addr2), MAC2STR(hdr->addr3)); return TXRX_DROP; } break; case (WLAN_FC_TODS | WLAN_FC_FROMDS): /* RA TA DA SA */ memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr4, ETH_ALEN); dev = ieee80211_get_wds_dev(local, hdr->addr2); if (!dev || memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) != 0) { printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA=" MACSTR " TA=" MACSTR " DA=" MACSTR " SA=" MACSTR ")\n", rx->dev->name, MAC2STR(hdr->addr1), MAC2STR(hdr->addr2), MAC2STR(hdr->addr3), MAC2STR(hdr->addr4)); return TXRX_DROP; } break; case WLAN_FC_FROMDS: /* DA BSSID SA */ memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr3, ETH_ALEN); sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type != IEEE80211_SUB_IF_TYPE_STA || memcmp(hdr->addr3, dev->dev_addr, ETH_ALEN) == 0 || memcmp(hdr->addr2, sdata->u.sta.bssid, ETH_ALEN) != 0) { return TXRX_DROP; } break; case 0: /* DA SA BSSID */ memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); if (local->conf.mode != IW_MODE_ADHOC || memcmp(hdr->addr3, local->bssid, ETH_ALEN) != 0) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: dropped IBSS frame (DA=" MACSTR " SA=" MACSTR " BSSID=" MACSTR ")\n", dev->name, MAC2STR(hdr->addr1), MAC2STR(hdr->addr2), MAC2STR(hdr->addr3)); } return TXRX_DROP; } break; } payload = skb->data + hdrlen; if (unlikely(skb->len - hdrlen < 8)) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: RX too short data frame " "payload\n", dev->name); } return TXRX_DROP; } ethertype = (payload[6] << 8) | payload[7]; if (likely((memcmp(payload, rfc1042_header, 6) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(payload, bridge_tunnel_header, 6) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ skb_pull(skb, hdrlen + 6); memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); } else { struct ethhdr *ehdr; unsigned short len; skb_pull(skb, hdrlen); len = htons(skb->len); ehdr = (struct ethhdr *)skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dst, ETH_ALEN); memcpy(ehdr->h_source, src, ETH_ALEN); ehdr->h_proto = len; } if (rx->sta && !rx->sta->assoc_ap && !(rx->sta && (rx->sta->flags & WLAN_STA_WDS))) skb->dev = rx->sta->dev; else skb->dev = dev; skb2 = NULL; sdata = IEEE80211_DEV_TO_SUB_IF(dev); /* * don't count the master since the low level code * counts it already for us. */ if (skb->dev != sdata->master) { sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; } if (local->bridge_packets && sdata->type != IEEE80211_SUB_IF_TYPE_WDS && sdata->type != IEEE80211_SUB_IF_TYPE_STA) { if (MULTICAST_ADDR(skb->data)) { /* send multicast frames both to higher layers in * local net stack and back to the wireless media */ skb2 = skb_copy(skb, GFP_ATOMIC); if (skb2 == NULL) printk(KERN_DEBUG "%s: failed to clone " "multicast frame\n", dev->name); } else { struct sta_info *dsta; dsta = sta_info_get(local, skb->data); if (dsta && dsta->dev == NULL) { printk(KERN_DEBUG "Station with null dev " "structure!\n"); } else if (dsta && dsta->dev == dev) { /* Destination station is associated to this * AP, so send the frame directly to it and * do not pass the frame to local net stack. */ skb2 = skb; skb = NULL; } if (dsta) sta_info_release(local, dsta); } } if (skb) { /* deliver to local stack */ skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } if (skb2) { /* send to wireless media */ skb2->protocol = __constant_htons(ETH_P_802_3); skb2->mac.raw = skb2->nh.raw = skb2->data; dev_queue_xmit(skb2); } return TXRX_QUEUED; } static struct ieee80211_rate * ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate) { int m, r; for (m = 0; m < local->hw->num_modes; m++) { struct ieee80211_hw_modes *mode = &local->hw->modes[m]; if (mode->mode != phymode) continue; for (r = 0; r < mode->num_rates; r++) { struct ieee80211_rate *rate = &mode->rates[r]; if (rate->val == hw_rate || (rate->flags & IEEE80211_RATE_PREAMBLE2 && rate->val2 == hw_rate)) return rate; } } return NULL; } void ieee80211_rx_mgmt(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *status, u32 msg_type) { struct ieee80211_local *local = dev->priv; struct ieee80211_frame_info *fi; size_t hlen; struct ieee80211_sub_if_data *sdata; dev = local->apdev; skb->dev = dev; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (skb_headroom(skb) < sizeof(struct ieee80211_frame_info)) { I802_DEBUG_INC(local->rx_expand_skb_head); if (pskb_expand_head(skb, sizeof(struct ieee80211_frame_info), 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return; } } hlen = sizeof(struct ieee80211_frame_info); if (msg_type == ieee80211_msg_monitor) hlen -= sizeof(fi->msg_type); fi = (struct ieee80211_frame_info *) skb_push(skb, hlen); memset(fi, 0, hlen); if (msg_type != ieee80211_msg_monitor) fi->msg_type = htonl(msg_type); fi->version = htonl(IEEE80211_FI_VERSION); fi->length = htonl(hlen); if (status) { // struct timespec ts; struct ieee80211_rate *rate; #if 0 jiffies_to_timespec(status->hosttime, &ts); fi->hosttime = cpu_to_be64(ts.tv_sec * 1000000 + ts.tv_nsec / 1000); fi->mactime = cpu_to_be64(status->mactime); #endif switch (status->phymode) { case MODE_IEEE80211A: fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a); break; case MODE_IEEE80211B: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b); break; case MODE_IEEE80211G: fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g); break; case MODE_ATHEROS_TURBO: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_turbo); break; default: fi->phytype = 0xAAAAAAAA; break; } fi->channel = htonl(status->channel); rate = ieee80211_get_rate(local, status->phymode, status->rate); if (rate) { fi->datarate = htonl(rate->rate); if (rate->flags & IEEE80211_RATE_PREAMBLE2) { if (status->rate == rate->val) fi->preamble = htonl(2); /* long */ else if (status->rate == rate->val2) fi->preamble = htonl(1); /* short */ } else fi->preamble = htonl(0); } else { fi->datarate = htonl(0); fi->preamble = htonl(0); } fi->antenna = htonl(status->antenna); fi->priority = 0xffffffff; /* no clue */ fi->ssi_type = htonl(ieee80211_ssi_raw); fi->ssi_signal = htonl(status->ssi); fi->ssi_noise = 0x00000000; fi->encoding = 0; } else { fi->ssi_type = htonl(ieee80211_ssi_none); } sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; skb->mac.raw = skb->data; skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = __constant_htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } int ieee80211_radar_status(struct net_device *dev, int channel, int radar, int radar_type) { struct sk_buff *skb; struct ieee80211_radar_info *msg; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_radar_info)); if (skb == NULL) return -ENOMEM; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_radar_info *) skb_put(skb, sizeof(struct ieee80211_radar_info)); msg->channel = channel; msg->radar = radar; msg->radar_type = radar_type; ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_radar); return 0; } int ieee80211_set_aid_for_sta(struct net_device *dev, u8 *peer_address, u16 aid) { struct sk_buff *skb; struct ieee80211_msg_set_aid_for_sta *msg; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_msg_set_aid_for_sta)); if (skb == NULL) return -ENOMEM; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_msg_set_aid_for_sta *) skb_put(skb, sizeof(struct ieee80211_msg_set_aid_for_sta)); memcpy(msg->sta_address, peer_address, ETH_ALEN); msg->aid = aid; ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_set_aid_for_sta); return 0; } static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); if (sdata->bss) atomic_inc(&sdata->bss->num_sta_ps); sta->flags |= WLAN_STA_PS; sta->pspoll = 0; #ifdef IEEE80211_VERBOSE_DEBUG_PS printk(KERN_DEBUG "%s: STA " MACSTR " aid %d enters power " "save mode\n", dev->name, MAC2STR(sta->addr), sta->aid); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ } static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta) { struct ieee80211_local *local = dev->priv; struct sk_buff *skb; int sent = 0; struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_packet_data *pkt_data; sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); if (sdata->bss) atomic_dec(&sdata->bss->num_sta_ps); sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM); sta->pspoll = 0; if (!skb_queue_empty(&sta->ps_tx_buf) && local->hw->set_tim) local->hw->set_tim(dev, sta->aid, 0); #ifdef IEEE80211_VERBOSE_DEBUG_PS printk(KERN_DEBUG "%s: STA " MACSTR " aid %d exits power " "save mode\n", dev->name, MAC2STR(sta->addr), sta->aid); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ /* Send all buffered frames to the station */ while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; sent++; pkt_data->control.requeue = 1; dev_queue_xmit(skb); } while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; local->total_ps_buffered--; sent++; #ifdef IEEE80211_VERBOSE_DEBUG_PS printk(KERN_DEBUG "%s: STA " MACSTR " aid %d send PS frame " "since STA not sleeping anymore\n", dev->name, MAC2STR(sta->addr), sta->aid); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ pkt_data->control.requeue = 1; dev_queue_xmit(skb); } return sent; } static ieee80211_txrx_result ieee80211_rx_h_ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx) { struct sk_buff *skb; int no_pending_pkts; if (likely(!rx->sta || WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_CTRL || WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_PSPOLL)) return TXRX_CONTINUE; skb = skb_dequeue(&rx->sta->tx_filtered); if (skb == NULL) { skb = skb_dequeue(&rx->sta->ps_tx_buf); if (skb) rx->local->total_ps_buffered--; } no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && skb_queue_empty(&rx->sta->ps_tx_buf); if (skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* tell TX path to send one frame even though the STA may * still remain is PS mode after this frame exchange */ rx->sta->pspoll = 1; #ifdef IEEE80211_VERBOSE_DEBUG_PS printk(KERN_DEBUG "STA " MACSTR " aid %d: PS Poll (entries " "after %d)\n", MAC2STR(rx->sta->addr), rx->sta->aid, skb_queue_len(&rx->sta->ps_tx_buf)); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ /* Use MoreData flag to indicate whether there are more * buffered frames for this STA */ if (no_pending_pkts) { hdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREDATA); rx->sta->flags &= ~WLAN_STA_TIM; } else hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA); dev_queue_xmit(skb); if (no_pending_pkts && rx->local->hw->set_tim) rx->local->hw->set_tim(rx->dev, rx->sta->aid, 0); #ifdef IEEE80211_VERBOSE_DEBUG_PS } else if (!rx->u.rx.sent_ps_buffered) { printk(KERN_DEBUG "%s: STA " MACSTR " sent PS Poll even " "though there is no buffered frames for it\n", rx->dev->name, MAC2STR(rx->sta->addr)); #endif /* IEEE80211_VERBOSE_DEBUG_PS */ } /* Free PS Poll skb here instead of returning TXRX_DROP that would * count as an dropped frame. */ dev_kfree_skb(rx->skb); return TXRX_QUEUED; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_add(struct ieee80211_local *local, unsigned int frag, unsigned int seq, int rx_queue, struct sk_buff **skb) { struct ieee80211_fragment_entry *entry; int idx; idx = local->fragment_next; entry = &local->fragments[local->fragment_next++]; if (local->fragment_next >= IEEE80211_FRAGMENT_MAX) local->fragment_next = 0; if (entry->skb) { #ifdef CONFIG_IEEE80211_DEBUG struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) entry->skb->data; printk(KERN_DEBUG "%s: RX reassembly removed oldest " "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " "addr1=" MACSTR " addr2=" MACSTR "\n", local->mdev->name, idx, jiffies - entry->first_frag_time, entry->seq, entry->last_frag, MAC2STR(hdr->addr1), MAC2STR(hdr->addr2)); #endif /* CONFIG_IEEE80211_DEBUG */ dev_kfree_skb(entry->skb); } entry->skb = *skb; *skb = NULL; entry->first_frag_time = jiffies; entry->seq = seq; entry->rx_queue = rx_queue; entry->last_frag = frag; entry->ccmp = 0; return entry; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_find(struct ieee80211_local *local, u16 fc, unsigned int frag, unsigned int seq, int rx_queue, struct ieee80211_hdr *hdr) { struct ieee80211_fragment_entry *entry; int i, idx; idx = local->fragment_next; for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { struct ieee80211_hdr *f_hdr; u16 f_fc; idx--; if (idx < 0) idx = IEEE80211_FRAGMENT_MAX - 1; entry = &local->fragments[idx]; if (!entry->skb || entry->seq != seq || entry->rx_queue != rx_queue || entry->last_frag + 1 != frag) continue; f_hdr = (struct ieee80211_hdr *) entry->skb->data; f_fc = le16_to_cpu(f_hdr->frame_control); if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_GET_TYPE(f_fc) || memcmp(hdr->addr1, f_hdr->addr1, ETH_ALEN) != 0 || memcmp(hdr->addr2, f_hdr->addr2, ETH_ALEN) != 0) continue; if (entry->first_frag_time + 2 * HZ < jiffies) { dev_kfree_skb(entry->skb); entry->skb = NULL; continue; } return entry; } return NULL; } static ieee80211_txrx_result ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx) { struct ieee80211_hdr *hdr; u16 sc; unsigned int frag, seq; struct ieee80211_fragment_entry *entry; hdr = (struct ieee80211_hdr *) rx->skb->data; sc = le16_to_cpu(hdr->seq_ctrl); frag = WLAN_GET_SEQ_FRAG(sc); if (likely((!(rx->fc & WLAN_FC_MOREFRAG) && frag == 0) || (rx->skb)->len < 24 || MULTICAST_ADDR(hdr->addr1))) { /* not fragmented */ goto out; } I802_DEBUG_INC(rx->local->rx_handlers_fragments); seq = WLAN_GET_SEQ_SEQ(sc); if (frag == 0) { /* This is the first fragment of a new frame. */ entry = ieee80211_reassemble_add(rx->local, frag, seq, rx->u.rx.queue, &(rx->skb)); if (rx->key && rx->key->alg == ALG_CCMP && (rx->fc & WLAN_FC_ISWEP)) { /* Store CCMP PN so that we can verify that the next * fragment has a sequential PN value. */ entry->ccmp = 1; memcpy(entry->last_pn, rx->key->u.ccmp.rx_pn[rx->u.rx.queue], CCMP_PN_LEN); } return TXRX_QUEUED; } /* This is a fragment for a frame that should already be pending in * fragment cache. Add this fragment to the end of the pending entry. */ entry = ieee80211_reassemble_find(rx->local, rx->fc, frag, seq, rx->u.rx.queue, hdr); if (!entry) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); return TXRX_DROP; } /* Verify that MPDUs within one MSDU have sequential PN values. * (IEEE 802.11i, 8.3.3.4.5) */ if (entry->ccmp) { int i; u8 pn[CCMP_PN_LEN], *rpn; if (rx->key == NULL || rx->key->alg != ALG_CCMP) return TXRX_DROP; memcpy(pn, entry->last_pn, CCMP_PN_LEN); for (i = CCMP_PN_LEN - 1; i >= 0; i--) { pn[i]++; if (pn[i]) break; } rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue]; if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) { printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential" " A2=" MACSTR " PN=%02x%02x%02x%02x%02x%02x " "(expected %02x%02x%02x%02x%02x%02x)\n", rx->dev->name, MAC2STR(hdr->addr2), rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5], pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]); return TXRX_DROP; } memcpy(entry->last_pn, pn, CCMP_PN_LEN); } /* TODO: could gather list of skb's and reallocate data buffer only * after finding out the total length of the frame */ skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc)); if (skb_tailroom(entry->skb) < rx->skb->len) { I802_DEBUG_INC(rx->local->rx_expand_skb_head2); if (unlikely(pskb_expand_head(entry->skb, 0, rx->skb->len, GFP_ATOMIC))) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); return TXRX_DROP; } } memcpy(skb_put(entry->skb, rx->skb->len), rx->skb->data, rx->skb->len); entry->last_frag = frag; dev_kfree_skb(rx->skb); if (rx->fc & WLAN_FC_MOREFRAG) { rx->skb = NULL; return TXRX_QUEUED; } /* Complete frame has been reassembled - process it now */ rx->skb = entry->skb; rx->fragmented = 1; entry->skb = NULL; out: if (rx->sta) rx->sta->rx_packets++; if (MULTICAST_ADDR(hdr->addr1)) rx->local->dot11MulticastReceivedFrameCount++; #ifdef IEEE80211_LEDS else ieee80211_rx_led(2, rx->dev); #endif /* IEEE80211_LEDS */ return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx) { if (rx->local->conf.mode == IW_MODE_MONITOR) { ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_monitor); return TXRX_QUEUED; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_check(struct ieee80211_txrx_data *rx) { struct ieee80211_hdr *hdr; int always_sta_key; hdr = (struct ieee80211_hdr *) rx->skb->data; /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ if (rx->sta && !MULTICAST_ADDR(hdr->addr1)) { if (unlikely(rx->fc & WLAN_FC_RETRY && rx->sta->last_seq_ctrl[rx->u.rx.queue] == hdr->seq_ctrl)) { rx->local->dot11FrameDuplicateCount++; rx->sta->num_duplicates++; return TXRX_DROP; } else rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl; } if (rx->local->hw->rx_includes_fcs && rx->skb->len > FCS_LEN) skb_trim(rx->skb, rx->skb->len - FCS_LEN); if (unlikely(rx->skb->len < 16)) { I802_DEBUG_INC(rx->local->rx_handlers_drop_short); return TXRX_DROP; } /* Filter out foreign unicast packets when in promiscuous mode. * FIX: Filter out multicast to foreign BSSID. */ if (rx->local->conf.mode == IW_MODE_INFRA && !MULTICAST_ADDR(hdr->addr1) && !ieee80211_own_addr(rx->dev, hdr->addr1)) return TXRX_DROP; /* Drop disallowed frame classes based on STA auth/assoc state; * IEEE 802.11, Chap 5.5. * * 80211.o does filtering only based on association state, i.e., it * drops Class 3 frames from not associated stations. hostapd sends * deauth/disassoc frames when needed. In addition, hostapd is * responsible for filtering on both auth and assoc states. */ if (unlikely((WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA || (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_CTRL && WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_PSPOLL)) && rx->local->conf.mode != IW_MODE_ADHOC && (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) { if (!(rx->fc & WLAN_FC_FROMDS) && !(rx->fc & WLAN_FC_TODS)) { /* Drop IBSS frames silently. */ return TXRX_DROP; } ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_sta_not_assoc); return TXRX_QUEUED; } if (rx->local->conf.mode == IW_MODE_INFRA) always_sta_key = 0; else always_sta_key = 1; if (rx->sta && rx->sta->key && always_sta_key) { rx->key = rx->sta->key; } else { if (!rx->sdata) { printk(KERN_DEBUG "%s: sdata was null in packet!!\n", rx->dev->name); printk(KERN_DEBUG "%s: Addr1: " MACSTR "\n", rx->dev->name, MAC2STR(hdr->addr1)); printk(KERN_DEBUG "%s: Addr2: " MACSTR "\n", rx->dev->name, MAC2STR(hdr->addr2)); printk(KERN_DEBUG "%s: Addr3: " MACSTR "\n", rx->dev->name, MAC2STR(hdr->addr3)); return TXRX_DROP; } if (rx->sta && rx->sta->key) rx->key = rx->sta->key; else rx->key = rx->sdata->default_key; if (rx->local->hw->wep_include_iv && rx->fc & WLAN_FC_ISWEP) { int keyidx = ieee80211_wep_get_keyidx(rx->skb); if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS && (rx->sta == NULL || rx->sta->key == NULL || keyidx > 0)) { rx->key = rx->sdata->keys[keyidx]; } if (!rx->key) { printk(KERN_DEBUG "%s: RX WEP frame with " "unknown keyidx %d (A1=" MACSTR " A2=" MACSTR " A3=" MACSTR ")\n", rx->dev->name, keyidx, MAC2STR(hdr->addr1), MAC2STR(hdr->addr2), MAC2STR(hdr->addr3)); ieee80211_rx_mgmt( rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_wep_frame_unknown_key); return TXRX_QUEUED; } } } if (rx->fc & WLAN_FC_ISWEP && rx->key) { rx->key->tx_rx_count++; if (unlikely(rx->local->key_tx_rx_threshold && rx->key->tx_rx_count > rx->local->key_tx_rx_threshold)) { ieee80211_key_threshold_notify(rx->dev, rx->key, rx->sta); } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx) { struct sta_info *sta = rx->sta; struct net_device *dev = rx->dev; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; if (!sta) return TXRX_CONTINUE; /* Update last_rx only for IBSS packets which are for the current * BSSID to avoid keeping the current IBSS network alive in cases where * other STAs are using different BSSID. */ if (rx->local->conf.mode == IW_MODE_ADHOC) { u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len); if (memcmp(bssid, rx->local->bssid, ETH_ALEN) == 0) sta->last_rx = jiffies; } else if (!MULTICAST_ADDR(hdr->addr1) || rx->local->conf.mode == IW_MODE_INFRA) { /* Update last_rx only for unicast frames in order to prevent * the Probe Request frames (the only broadcast frames from a * STA in infrastructure mode) from keeping a connection alive. */ sta->last_rx = jiffies; } sta->rx_fragments++; sta->rx_bytes += rx->skb->len; sta->last_rssi = rx->u.rx.status->ssi; if (!(rx->fc & WLAN_FC_MOREFRAG)) { /* Change STA power saving mode only in the end of a frame * exchange sequence */ if ((sta->flags & WLAN_STA_PS) && !(rx->fc & WLAN_FC_PWRMGT)) rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta); else if (!(sta->flags & WLAN_STA_PS) && (rx->fc & WLAN_FC_PWRMGT)) ap_sta_ps_start(dev, sta); } /* Drop data::nullfunc frames silently, since they are used only to * control station power saving mode. */ if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA && WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_NULLFUNC) { I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); /* Update counter and free packet here to avoid counting this * as a dropped packed. */ sta->rx_packets++; dev_kfree_skb(rx->skb); return TXRX_QUEUED; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx) { if (!rx->sta || !(rx->fc & WLAN_FC_ISWEP) || WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA || !rx->key || rx->key->alg != ALG_WEP) return TXRX_CONTINUE; /* Check for weak IVs, if hwaccel did not remove IV from the frame */ if (rx->local->hw->wep_include_iv || rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) { u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key); if (iv) { rx->sta->wep_weak_iv_count++; } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx) { /* If the device handles decryption totally, skip this test */ if (rx->local->hw->device_hides_wep) return TXRX_CONTINUE; if ((rx->key && rx->key->alg != ALG_WEP) || !(rx->fc & WLAN_FC_ISWEP) || (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA && (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT || WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH))) return TXRX_CONTINUE; if (!rx->key) { printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n", rx->dev->name); return TXRX_DROP; } if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) || rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) { if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) { printk(KERN_DEBUG "%s: RX WEP frame, decrypt " "failed\n", rx->dev->name); return TXRX_DROP; } } else if (rx->local->hw->wep_include_iv) { ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); /* remove ICV */ skb_trim(rx->skb, rx->skb->len - 4); } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx) { if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) && rx->local->conf.mode != IW_MODE_INFRA) { /* Pass both encrypted and unencrypted EAPOL frames to user * space for processing. */ ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_normal); return TXRX_QUEUED; } if (unlikely(rx->sdata->ieee802_1x && WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA && WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC && (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) && !ieee80211_is_eapol(rx->skb))) { #ifdef CONFIG_IEEE80211_DEBUG struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; printk(KERN_DEBUG "%s: dropped frame from " MACSTR " (unauthorized port)\n", rx->dev->name, MAC2STR(hdr->addr2)); #endif /* CONFIG_IEEE80211_DEBUG */ return TXRX_DROP; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx) { /* If the device handles decryption totally, skip this test */ if (rx->local->hw->device_hides_wep) return TXRX_CONTINUE; /* Drop unencrypted frames if key is set. */ if (unlikely(!(rx->fc & WLAN_FC_ISWEP) && WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA && WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC && (rx->key || rx->sdata->drop_unencrypted) && (rx->sdata->eapol == 0 || !ieee80211_is_eapol(rx->skb)))) { printk(KERN_DEBUG "%s: RX non-WEP frame, but expected " "encryption\n", rx->dev->name); return TXRX_DROP; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) { ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status); } else { /* Management frames are sent to hostapd for processing */ ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_normal); } return TXRX_QUEUED; } static ieee80211_txrx_result ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx) { struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb; if (unlikely(local->sta_scanning != 0)) { ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status); return TXRX_QUEUED; } if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA) local->scan.txrx_count++; if (unlikely(local->scan.in_scan != 0 && rx->u.rx.status->freq == local->scan.freq)) { struct ieee80211_hdr *hdr; u16 fc; local->scan.rx_packets++; hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT && WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_BEACON) { local->scan.rx_beacon++; /* Need to trim FCS here because it is normally * removed only after this passive scan handler. */ if (rx->local->hw->rx_includes_fcs && rx->skb->len > FCS_LEN) skb_trim(rx->skb, rx->skb->len - FCS_LEN); ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_passive_scan); return TXRX_QUEUED; } else { I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); return TXRX_DROP; } } return TXRX_CONTINUE; } static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len) { u16 fc; if (len < 24) return NULL; fc = le16_to_cpu(hdr->frame_control); switch (WLAN_FC_GET_TYPE(fc)) { case WLAN_FC_TYPE_DATA: switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) { case WLAN_FC_TODS: return hdr->addr1; case (WLAN_FC_TODS | WLAN_FC_FROMDS): return NULL; case WLAN_FC_FROMDS: return hdr->addr2; case 0: return hdr->addr3; } break; case WLAN_FC_TYPE_MGMT: return hdr->addr3; case WLAN_FC_TYPE_CTRL: if (WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PSPOLL) return hdr->addr1; else return NULL; } return NULL; } static struct net_device * ieee80211_get_rx_dev(struct ieee80211_local *local, struct ieee80211_hdr *hdr, size_t len, int *sta_broadcast) { u8 *bssid; struct net_device *dev; u16 fc; bssid = ieee80211_get_bssid(hdr, len); if (bssid) { dev = ieee80211_own_bssid(local, bssid); if (!dev && (local->conf.mode == IW_MODE_INFRA || local->conf.mode == IW_MODE_ADHOC)) dev = ieee80211_sta_bssid(local, bssid, hdr->addr1, sta_broadcast); if (dev) return dev; } if (len >= 30) { fc = le16_to_cpu(hdr->frame_control); if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_DATA && (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) == (WLAN_FC_TODS | WLAN_FC_FROMDS)) { dev = ieee80211_get_wds_dev(local, hdr->addr2); if (dev) return dev; } } /* Default to default device if nothing else matches */ return local->wdev; } static void ieee80211_rx_michael_mic_report(struct net_device *dev, struct ieee80211_hdr *hdr, struct sta_info *sta, struct ieee80211_txrx_data *rx) { int keyidx, hdrlen; hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb); if (rx->skb->len >= hdrlen + 4) keyidx = rx->skb->data[hdrlen + 3] >> 6; else keyidx = -1; /* TODO: verify that this is not triggered by fragmented * frames (hw does not verify MIC for them). */ printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC " "failure from " MACSTR " to " MACSTR " keyidx=%d\n", dev->name, MAC2STR(hdr->addr2), MAC2STR(hdr->addr1), keyidx); if (sta == NULL) { /* Some hardware versions seem to generate incorrect * Michael MIC reports; ignore them to avoid triggering * countermeasures. */ printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for unknown address " MACSTR "\n", dev->name, MAC2STR(hdr->addr2)); goto ignore; } if (!(rx->fc & WLAN_FC_ISWEP)) { printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for a frame with no ISWEP flag (src " MACSTR ")\n", dev->name, MAC2STR(hdr->addr2)); goto ignore; } if (rx->local->hw->wep_include_iv && rx->local->conf.mode == IW_MODE_MASTER) { int keyidx = ieee80211_wep_get_keyidx(rx->skb); /* AP with Pairwise keys support should never receive Michael * MIC errors for non-zero keyidx because these are reserved * for group keys and only the AP is sending real multicast * frames in BSS. */ if (keyidx) { printk(KERN_DEBUG "%s: ignored Michael MIC error for " "a frame with non-zero keyidx (%d) (src " MACSTR ")\n", dev->name, keyidx, MAC2STR(hdr->addr2)); goto ignore; } } if (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA && (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT || WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH)) { printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for a frame that cannot be encrypted " "(fc=0x%04x) (src " MACSTR ")\n", dev->name, rx->fc, MAC2STR(hdr->addr2)); goto ignore; } do { union iwreq_data wrqu; char *buf = kmalloc(128, GFP_ATOMIC); if (buf == NULL) break; /* TODO: needed parameters: count, key type, TSC */ sprintf(buf, "MLME-MICHAELMICFAILURE.indication(" "keyid=%d %scast addr=" MACSTR ")", keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni", MAC2STR(hdr->addr2)); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf); kfree(buf); } while (0); /* TODO: consider verifying the MIC error report with software * implementation if we get too many spurious reports from the * hardware. */ ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status, ieee80211_msg_michael_mic_failure); return; ignore: dev_kfree_skb(rx->skb); rx->skb = NULL; } static void ieee80211_sta_rx_broadcast(struct ieee80211_txrx_data *rx) { struct ieee80211_local *local = rx->dev->priv; u8 *_bssid, bssid[ETH_ALEN]; struct sk_buff *orig_skb = rx->skb, *skb; struct ieee80211_hdr *hdr; ieee80211_rx_handler *handler; ieee80211_txrx_result res; struct list_head *ptr; hdr = (struct ieee80211_hdr *) orig_skb->data; _bssid = ieee80211_get_bssid(hdr, orig_skb->len); if (_bssid == NULL) { dev_kfree_skb(orig_skb); return; } memcpy(bssid, _bssid, ETH_ALEN); list_for_each(ptr, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->type != IEEE80211_SUB_IF_TYPE_STA || (memcmp(bssid, sdata->u.sta.bssid, ETH_ALEN) != 0 && !(bssid[0] & 0x01))) continue; skb = skb_copy(orig_skb, GFP_ATOMIC); if (skb == NULL) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: failed to copy " "multicast frame for %s", rx->dev->name, sdata->dev->name); } continue; } hdr = (struct ieee80211_hdr *) skb->data; rx->skb = skb; rx->dev = sdata->dev; rx->sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); res = TXRX_DROP; for (handler = local->rx_handlers; *handler != NULL; handler++) { res = (*handler)(rx); if (res == TXRX_DROP || res == TXRX_QUEUED) break; } if (res == TXRX_DROP || *handler == NULL) dev_kfree_skb(skb); } dev_kfree_skb(orig_skb); } /* * This is the receive path handler. It is called by a low level driver when an * 802.11 MPDU is received from the hardware. */ void ieee80211_rx(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *status) { struct ieee80211_local *local = dev->priv; struct sta_info *sta; struct ieee80211_hdr *hdr; ieee80211_rx_handler *handler; struct ieee80211_txrx_data rx; ieee80211_txrx_result res = TXRX_DROP; u16 type; int sta_broadcast = 0; hdr = (struct ieee80211_hdr *) skb->data; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; if (skb->len >= 16) { sta = rx.sta = sta_info_get(local, hdr->addr2); if (unlikely(sta == NULL && local->conf.mode == IW_MODE_ADHOC)) { u8 *bssid = ieee80211_get_bssid(hdr, skb->len); if (bssid && memcmp(bssid, local->bssid, ETH_ALEN) == 0) sta = rx.sta = ieee80211_ibss_add_sta(dev, skb, bssid, hdr->addr2); } } else sta = rx.sta = NULL; if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS)) rx.dev = sta->dev; else rx.dev = ieee80211_get_rx_dev(local, hdr, skb->len, &sta_broadcast); rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev); rx.u.rx.status = status; rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0; type = WLAN_FC_GET_TYPE(rx.fc); if (type == WLAN_FC_TYPE_DATA || type == WLAN_FC_TYPE_MGMT) local->dot11ReceivedFragmentCount++; if (sta_broadcast) { ieee80211_sta_rx_broadcast(&rx); goto end; } if ((status->flag & RX_FLAG_MMIC_ERROR)) { ieee80211_rx_michael_mic_report(dev, hdr, sta, &rx); goto end; } for (handler = local->rx_handlers; *handler != NULL; handler++) { res = (*handler)(&rx); if (res != TXRX_CONTINUE) { if (res == TXRX_DROP) { I802_DEBUG_INC(local->rx_handlers_drop); if (sta) sta->rx_dropped++; } if (res == TXRX_QUEUED) I802_DEBUG_INC(local->rx_handlers_queued); break; } } if (res == TXRX_DROP || *handler == NULL) dev_kfree_skb(skb); end: if (sta) sta_info_release(local, sta); } static ieee80211_txrx_result ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx) { struct ieee80211_local *local = tx->local; struct sk_buff *skb = tx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u32 load = 0, hdrtime; /* TODO: this could be part of tx_status handling, so that the number * of retries would be known; TX rate should in that case be stored * somewhere with the packet */ /* Estimate total channel use caused by this frame */ /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, * 1 usec = 1/8 * (1080 / 10) = 13.5 */ if (local->conf.phymode == MODE_IEEE80211A || local->conf.phymode == MODE_ATHEROS_TURBO || local->conf.phymode == MODE_ATHEROS_TURBOG || (local->conf.phymode == MODE_IEEE80211G && tx->u.tx.rate->flags & IEEE80211_RATE_ERP)) hdrtime = CHAN_UTIL_HDR_SHORT; else hdrtime = CHAN_UTIL_HDR_LONG; load = hdrtime; if (!MULTICAST_ADDR(hdr->addr1)) load += hdrtime; if (tx->u.tx.control->use_rts_cts) load += 2 * hdrtime; else if (tx->u.tx.control->use_cts_protect) load += hdrtime; load += skb->len * tx->u.tx.rate->rate_inv; if (tx->u.tx.extra_frag) { int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { load += 2 * hdrtime; load += tx->u.tx.extra_frag[i]->len * tx->u.tx.rate->rate; } } /* Divide channel_use by 8 to avoid wrapping around the counter */ load >>= CHAN_UTIL_SHIFT; local->channel_use_raw += load; if (tx->sta) tx->sta->channel_use_raw += load; tx->sdata->channel_use_raw += load; return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx) { struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u32 load = 0, hdrtime; struct ieee80211_rate *rate; int i; /* Estimate total channel use caused by this frame */ if (unlikely(local->num_curr_rates < 0)) return TXRX_CONTINUE; rate = &local->curr_rates[0]; for (i = 0; i < local->num_curr_rates; i++) { if (local->curr_rates[i].val == rx->u.rx.status->rate) { rate = &local->curr_rates[i]; break; } } /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, * 1 usec = 1/8 * (1080 / 10) = 13.5 */ if (local->conf.phymode == MODE_IEEE80211A || local->conf.phymode == MODE_ATHEROS_TURBO || local->conf.phymode == MODE_ATHEROS_TURBOG || (local->conf.phymode == MODE_IEEE80211G && rate->flags & IEEE80211_RATE_ERP)) hdrtime = CHAN_UTIL_HDR_SHORT; else hdrtime = CHAN_UTIL_HDR_LONG; load = hdrtime; if (!MULTICAST_ADDR(hdr->addr1)) load += hdrtime; load += skb->len * rate->rate_inv; /* Divide channel_use by 8 to avoid wrapping around the counter */ load >>= CHAN_UTIL_SHIFT; local->channel_use_raw += load; if (rx->sta) rx->sta->channel_use_raw += load; rx->sdata->channel_use_raw += load; return TXRX_CONTINUE; } static void ieee80211_stat_refresh(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct list_head *ptr, *n; if (!local->stat_time) return; /* go through all stations */ spin_lock_bh(&local->sta_lock); list_for_each(ptr, &local->sta_list) { struct sta_info *sta = list_entry(ptr, struct sta_info, list); sta->channel_use = (sta->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sta->channel_use_raw = 0; } spin_unlock_bh(&local->sta_lock); /* go through all subinterfaces */ list_for_each_safe(ptr, n, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); sdata->channel_use = (sdata->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sdata->channel_use_raw = 0; } /* hardware interface */ local->channel_use = (local->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; local->channel_use_raw = 0; local->stat_timer.expires = jiffies + HZ * local->stat_time / 100; add_timer(&local->stat_timer); } /* This is a version of the rx handler that can be called from hard irq * context. Post the skb on the queue and schedule the tasklet */ void ieee80211_rx_irqsafe(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *status) { struct ieee80211_local *local = dev->priv; skb->dev = dev; memcpy(skb->cb, status, sizeof(struct ieee80211_rx_status)); skb->pkt_type = ieee80211_rx_msg; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } void ieee80211_tx_status_irqsafe(struct net_device *dev, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct ieee80211_local *local = dev->priv; int tmp; if (status->tx_filtered || status->excessive_retries) { /* Need to save a copy of skb->cb somewhere. Storing it in the * end of the data might not be the most efficient way of doing * this (since it may require reallocation of packet data), but * should be good enough for now since tx_filtered or * excessive_retries should not be triggered that often. */ if (skb_is_nonlinear(skb)) { if (skb_linearize(skb, GFP_ATOMIC)) { printk(KERN_DEBUG "%s: Failed to linearize " "skb\n", dev->name); dev_kfree_skb_irq(skb); return; } } if (skb_tailroom(skb) < sizeof(skb->cb) && pskb_expand_head(skb, 0, sizeof(skb->cb), GFP_ATOMIC)) { printk(KERN_DEBUG "%s: Failed to store skb->cb " "in skb->data for TX filtered frame\n", dev->name); dev_kfree_skb_irq(skb); return; } memcpy(skb_put(skb, sizeof(skb->cb)), skb->cb, sizeof(skb->cb)); } skb->dev = dev; memcpy(skb->cb, status, sizeof(struct ieee80211_tx_status)); skb->pkt_type = ieee80211_tx_status_msg; skb_queue_tail(status->req_tx_status ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { dev_kfree_skb_irq(skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } static void ieee80211_tasklet_handler(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sk_buff *skb; struct ieee80211_rx_status rx_status; struct ieee80211_tx_status tx_status; while ((skb = skb_dequeue(&local->skb_queue)) || (skb = skb_dequeue(&local->skb_queue_unreliable))) { switch (skb->pkt_type) { case ieee80211_rx_msg: /* Make a copy of the RX status because the original * skb may be freed during processing. Clear skb->type * in order to not confuse kernel netstack. */ memcpy(&rx_status, skb->cb, sizeof(rx_status)); skb->pkt_type = 0; ieee80211_rx(skb->dev, skb, &rx_status); break; case ieee80211_tx_status_msg: /* Make a copy of the TX status because the original * skb may be freed during processing. */ memcpy(&tx_status, skb->cb, sizeof(tx_status)); skb->pkt_type = 0; if ((tx_status.tx_filtered || tx_status.excessive_retries) && skb->len >= sizeof(skb->cb)) { /* Restore skb->cb from the copy that was made * in ieee80211_tx_status_irqsafe() */ memcpy(skb->cb, skb->data + skb->len - sizeof(skb->cb), sizeof(skb->cb)); skb_trim(skb, skb->len - sizeof(skb->cb)); } ieee80211_tx_status(skb->dev, skb, &tx_status); break; default: /* should never get here! */ printk(KERN_ERR "%s: Unknown message type (%d)\n", local->wdev->name, skb->pkt_type); dev_kfree_skb(skb); break; } } } /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to * make a prepared TX frame (one that has been given to hw) to look like brand * new IEEE 802.11 frame that is ready to go through TX processing again. */ static void ieee80211_remove_tx_extra(struct ieee80211_local *local, struct ieee80211_key *key, struct sk_buff *skb) { int hdrlen, iv_len, mic_len; if (key == NULL) return; hdrlen = ieee80211_get_hdrlen_from_skb(skb); switch (key->alg) { case ALG_WEP: iv_len = WEP_IV_LEN; mic_len = WEP_ICV_LEN; break; case ALG_TKIP: iv_len = TKIP_IV_LEN; mic_len = TKIP_ICV_LEN; break; case ALG_CCMP: iv_len = CCMP_HDR_LEN; mic_len = CCMP_MIC_LEN; break; default: return; } if (skb->len >= mic_len && key->force_sw_encrypt) skb_trim(skb, skb->len - mic_len); if (skb->len >= iv_len && skb->len > hdrlen) { memmove(skb->data + iv_len, skb->data, hdrlen); skb_pull(skb, iv_len); } { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc = le16_to_cpu(hdr->frame_control); if ((fc & 0x8C) == 0x88) /* QoS Control Field */ { fc &= ~(WLAN_FC_STYPE_QOS_DATA << 4); hdr->frame_control = cpu_to_le16(fc); memmove(skb->data + 2, skb->data, hdrlen - 2); skb_pull(skb, 2); } } } void ieee80211_tx_status(struct net_device *dev, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = dev->priv; struct ieee80211_tx_packet_data *pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; u16 frag, type; u32 msg_type; if (!status) { printk(KERN_ERR "%s: ieee80211_tx_status called with NULL status\n", dev->name); dev_kfree_skb(skb); return; } if (status->excessive_retries) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { if (sta->flags & WLAN_STA_PS) { /* The STA is in power save mode, so assume * that this TX packet failed because of that. */ status->excessive_retries = 0; status->tx_filtered = 1; } sta_info_release(local, sta); } } if (status->tx_filtered) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { sta->tx_filtered_count++; /* Clear the TX filter mask for this STA when sending * the next packet. If the STA went to power save mode, * this will happen when it is waking up for the next * time. */ sta->clear_dst_mask = 1; /* TODO: Is the WLAN_STA_PS flag always set here or is * the race between RX and TX status causing some * packets to be filtered out before 80211.o gets an * update for PS status? This seems to be the case, so * no changes are likely to be needed. */ if (sta->flags & WLAN_STA_PS && skb_queue_len(&sta->tx_filtered) < STA_MAX_TX_BUFFER) { ieee80211_remove_tx_extra(local, sta->key, skb); skb_queue_tail(&sta->tx_filtered, skb); } else if (!(sta->flags & WLAN_STA_PS) && !pkt_data->control.requeue) { /* Software retry the packet once */ pkt_data->control.requeue = 1; ieee80211_remove_tx_extra(local, sta->key, skb); dev_queue_xmit(skb); } else { if (net_ratelimit()) { printk(KERN_DEBUG "%s: dropped TX " "filtered frame queue_len=%d " "PS=%d @%lu\n", dev->name, skb_queue_len( &sta->tx_filtered), !!(sta->flags & WLAN_STA_PS), jiffies); } dev_kfree_skb(skb); } sta_info_release(local, sta); return; } } else { rate_control_tx_status(dev, skb, status); } #ifdef IEEE80211_LEDS if (local->tx_led_counter && (local->tx_led_counter-- == 1)) { ieee80211_tx_led(0, dev); } #endif /* IEEE80211_LEDS */ /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ frag = WLAN_GET_SEQ_FRAG(le16_to_cpu(hdr->seq_ctrl)); type = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_control)); if (status->ack) { if (frag == 0) { local->dot11TransmittedFrameCount++; if (MULTICAST_ADDR(hdr->addr1)) local->dot11MulticastTransmittedFrameCount++; if (status->retry_count > 0) local->dot11RetryCount++; if (status->retry_count > 1) local->dot11MultipleRetryCount++; } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!MULTICAST_ADDR(hdr->addr1) || type == WLAN_FC_TYPE_DATA || type == WLAN_FC_TYPE_MGMT) local->dot11TransmittedFragmentCount++; } else { if (frag == 0) local->dot11FailedCount++; } if (!status->req_tx_status) { dev_kfree_skb(skb); return; } msg_type = status->ack ? ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail; /* skb was the original skb used for TX. Clone it and give the clone * to netif_rx(). Free original skb. */ skb2 = skb_copy(skb, GFP_ATOMIC); if (!skb2) { dev_kfree_skb(skb); return; } dev_kfree_skb(skb); skb = skb2; /* Send frame to hostapd */ ieee80211_rx_mgmt(dev, skb, NULL, msg_type); } /* TODO: implement register/unregister functions for adding TX/RX handlers * into ordered list */ static ieee80211_rx_handler ieee80211_rx_handlers[] = { ieee80211_rx_h_parse_qos, ieee80211_rx_h_load_stats, ieee80211_rx_h_monitor, ieee80211_rx_h_passive_scan, ieee80211_rx_h_check, ieee80211_rx_h_sta_process, ieee80211_rx_h_ccmp_decrypt, ieee80211_rx_h_tkip_decrypt, ieee80211_rx_h_wep_weak_iv_detection, ieee80211_rx_h_wep_decrypt, ieee80211_rx_h_defragment, ieee80211_rx_h_ieee80211_rx_h_ps_poll, ieee80211_rx_h_michael_mic_verify, /* this must be after decryption - so header is counted in MPDU mic * must be before pae and data, so QOS_DATA format frames * are not passed to user space by these functions */ ieee80211_rx_h_remove_qos_control, ieee80211_rx_h_802_1x_pae, ieee80211_rx_h_drop_unencrypted, ieee80211_rx_h_data, ieee80211_rx_h_mgmt, NULL }; static ieee80211_tx_handler ieee80211_tx_handlers[] = { ieee80211_tx_h_rate_limit, ieee80211_tx_h_check_assoc, ieee80211_tx_h_ps_buf, ieee80211_tx_h_select_key, ieee80211_tx_h_michael_mic_add, ieee80211_tx_h_fragment, ieee80211_tx_h_tkip_encrypt, ieee80211_tx_h_ccmp_encrypt, ieee80211_tx_h_wep_encrypt, ieee80211_tx_h_rate_ctrl, ieee80211_tx_h_misc, ieee80211_tx_h_load_stats, NULL }; static void ieee80211_if_sdata_init(struct ieee80211_sub_if_data *sdata) { /* Default values for sub-interface parameters */ sdata->drop_unencrypted = 0; sdata->eapol = 1; } static struct net_device *ieee80211_if_add(struct net_device *dev, char *name, int locked) { struct net_device *wds_dev = NULL, *tmp_dev; struct ieee80211_local *local = dev->priv; struct ieee80211_sub_if_data *sdata = NULL, *sdata_parent; int alloc_size; int ret; int i; /* ensure 32-bit alignment of our private data and hw private data */ alloc_size = sizeof(struct net_device) + 3 + sizeof(struct ieee80211_sub_if_data) + 3; wds_dev = (struct net_device *) kmalloc(alloc_size, GFP_KERNEL); if (wds_dev == NULL) return NULL; memset(wds_dev, 0, alloc_size); wds_dev->priv = local; ether_setup(wds_dev); if (strlen(name) == 0) { i = 0; do { sprintf(wds_dev->name, "%s.%d", dev->name, i++); tmp_dev = dev_get_by_name(wds_dev->name); if (tmp_dev == NULL) break; dev_put(tmp_dev); } while (i < 10000); } else { snprintf(wds_dev->name, IFNAMSIZ, "%s", name); } memcpy(wds_dev->dev_addr, dev->dev_addr, ETH_ALEN); wds_dev->hard_start_xmit = ieee80211_subif_start_xmit; wds_dev->do_ioctl = ieee80211_ioctl; wds_dev->change_mtu = ieee80211_change_mtu; wds_dev->tx_timeout = ieee80211_tx_timeout; wds_dev->get_stats = ieee80211_get_stats; wds_dev->open = ieee80211_open; wds_dev->stop = ieee80211_stop; wds_dev->base_addr = dev->base_addr; wds_dev->irq = dev->irq; wds_dev->mem_start = dev->mem_start; wds_dev->mem_end = dev->mem_end; wds_dev->tx_queue_len = 0; sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev); sdata->type = IEEE80211_SUB_IF_TYPE_NORM; sdata->master = local->mdev; sdata->dev = wds_dev; sdata->local = local; memset(&sdata->stats, 0, sizeof(struct net_device_stats)); sdata_parent = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata_parent->type == IEEE80211_SUB_IF_TYPE_NORM) sdata->bss = &sdata_parent->u.norm; else { printk(KERN_DEBUG "%s: could not set BSS pointer for new " "interface %s\n", dev->name, wds_dev->name); } ieee80211_if_sdata_init(sdata); if (locked) ret = register_netdevice(wds_dev); else ret = register_netdev(wds_dev); if (ret) { kfree(wds_dev); return NULL; } list_add(&sdata->list, &local->sub_if_list); strcpy(name, wds_dev->name); return wds_dev; } int ieee80211_if_add_wds(struct net_device *dev, char *name, struct ieee80211_if_wds *wds, int locked) { struct net_device *wds_dev = NULL; struct ieee80211_sub_if_data *sdata = NULL; if (strlen(name) != 0) { wds_dev = dev_get_by_name(name); if (wds_dev) { dev_put(wds_dev); return -EEXIST; } } wds_dev = ieee80211_if_add(dev, name, locked); if (wds_dev == NULL) return -ENOANO; sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev); sdata->type = IEEE80211_SUB_IF_TYPE_WDS; memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds)); #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: Added WDS Link to " MACSTR "\n", wds_dev->name, MAC2STR(sdata->u.wds.remote_addr)); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ ieee80211_proc_init_virtual(wds_dev); return 0; } int ieee80211_if_update_wds(struct net_device *dev, char *name, struct ieee80211_if_wds *wds, int locked) { struct net_device *wds_dev = NULL; struct ieee80211_local *local = dev->priv; struct ieee80211_sub_if_data *sdata = NULL; struct sta_info *sta; struct list_head *ptr; list_for_each(ptr, &local->sub_if_list) { sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (strcmp(name, sdata->dev->name) == 0) { wds_dev = sdata->dev; break; } } if (wds_dev == NULL || sdata->type != IEEE80211_SUB_IF_TYPE_WDS) return -ENODEV; /* Remove STA entry for the old peer */ sta = sta_info_get(local, sdata->u.wds.remote_addr); if (sta) { sta_info_release(local, sta); sta_info_free(local, sta, 0); } else { printk(KERN_DEBUG "%s: could not find STA entry for WDS link " "%s peer " MACSTR "\n", dev->name, wds_dev->name, MAC2STR(sdata->u.wds.remote_addr)); } /* Update WDS link data */ memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds)); return 0; } static void ieee80211_if_init(struct net_device *dev) { struct ieee80211_local *local = dev->priv; spin_lock_init(&local->sub_if_lock); INIT_LIST_HEAD(&local->sub_if_list); } int ieee80211_if_add_vlan(struct net_device *dev, char *name, struct ieee80211_if_vlan *vlan, int locked) { struct net_device *vlan_dev = NULL; struct ieee80211_sub_if_data *sdata = NULL; if (strlen(name) != 0) { vlan_dev = dev_get_by_name(name); if (vlan_dev) { dev_put(vlan_dev); return -EEXIST; } } vlan_dev = ieee80211_if_add(dev, name, locked); if (vlan_dev == NULL) return -ENOANO; sdata = IEEE80211_DEV_TO_SUB_IF(vlan_dev); sdata->type = IEEE80211_SUB_IF_TYPE_VLAN; ieee80211_proc_init_virtual(vlan_dev); return 0; } static void ieee80211_if_norm_init(struct ieee80211_sub_if_data *sdata) { sdata->type = IEEE80211_SUB_IF_TYPE_NORM; sdata->u.norm.dtim_period = 2; sdata->u.norm.force_unicast_rateidx = -1; sdata->u.norm.max_ratectrl_rateidx = -1; skb_queue_head_init(&sdata->u.norm.ps_bc_buf); sdata->bss = &sdata->u.norm; } int ieee80211_if_add_norm(struct net_device *dev, char *name, u8 *bssid, int locked) { struct ieee80211_local *local = dev->priv; struct net_device *norm_dev = NULL; struct ieee80211_sub_if_data *sdata = NULL; if (local->bss_dev_count >= local->conf.bss_count) return -ENOBUFS; if (strlen(name) != 0) { norm_dev = dev_get_by_name(name); if (norm_dev) { dev_put(norm_dev); return -EEXIST; } } norm_dev = ieee80211_if_add(dev, name, locked); if (norm_dev == NULL) return -ENOANO; memcpy(norm_dev->dev_addr, bssid, ETH_ALEN); sdata = IEEE80211_DEV_TO_SUB_IF(norm_dev); ieee80211_if_norm_init(sdata); ieee80211_proc_init_virtual(norm_dev); spin_lock_bh(&local->sub_if_lock); local->bss_devs[local->bss_dev_count] = norm_dev; local->bss_dev_count++; spin_unlock_bh(&local->sub_if_lock); return 0; } static void ieee80211_addr_inc(u8 *addr) { int pos = 5; while (pos >= 0) { addr[pos]++; if (addr[pos] != 0) break; pos--; } } int ieee80211_if_add_sta(struct net_device *dev, char *name, int locked) { struct ieee80211_local *local = dev->priv; struct net_device *sta_dev; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_sta *ifsta; int i; if (local->sta_dev_count >= local->conf.bss_count) return -ENOBUFS; if (strlen(name) != 0) { sta_dev = dev_get_by_name(name); if (sta_dev) { dev_put(sta_dev); return -EEXIST; } } sta_dev = ieee80211_if_add(dev, name, locked); if (sta_dev == NULL) return -ENOANO; sdata = IEEE80211_DEV_TO_SUB_IF(sta_dev); ifsta = &sdata->u.sta; sdata->type = IEEE80211_SUB_IF_TYPE_STA; ieee80211_proc_init_virtual(sta_dev); spin_lock_bh(&local->sub_if_lock); for (i = 0; i < local->conf.bss_count; i++) { if (local->sta_devs[i] == NULL) { local->sta_devs[i] = sta_dev; local->sta_dev_count++; printk(KERN_DEBUG "%s: using STA entry %d\n", sta_dev->name, i); while (i > 0) { ieee80211_addr_inc(sta_dev->dev_addr); i--; } printk(KERN_DEBUG "%s: MAC address " MACSTR "\n", sta_dev->name, MAC2STR(sta_dev->dev_addr)); break; } } spin_unlock_bh(&local->sub_if_lock); init_timer(&ifsta->timer); ifsta->timer.data = (unsigned long) sta_dev; ifsta->timer.function = ieee80211_sta_timer; ifsta->capab = WLAN_CAPABILITY_ESS; ifsta->auth_algs = IEEE80211_AUTH_ALG_OPEN | IEEE80211_AUTH_ALG_SHARED_KEY; ifsta->create_ibss = 1; ifsta->wmm_enabled = 1; return 0; } static void ieee80211_if_del(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int locked) { struct sta_info *sta; u8 addr[ETH_ALEN]; int i, j; struct list_head *ptr, *n; memset(addr, 0xff, ETH_ALEN); for (i = 0; i < NUM_DEFAULT_KEYS; i++) { if (!sdata->keys[i]) continue; #if 0 /* Low-level driver has probably disabled hw * already, so there is not really much point * in disabling the keys at this point. */ if (local->hw->set_key) local->hw->set_key(dev, DISABLE_KEY, addr, local->keys[i], 0); #endif kfree(sdata->keys[i]); } switch (sdata->type) { case IEEE80211_SUB_IF_TYPE_NORM: /* Remove all virtual interfaces that use this BSS * as their sdata->bss */ list_for_each_safe(ptr, n, &local->sub_if_list) { struct ieee80211_sub_if_data *tsdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (tsdata != sdata && tsdata->bss == &sdata->u.norm) { printk(KERN_DEBUG "%s: removing virtual " "interface %s because its BSS interface" " is being removed\n", sdata->dev->name, tsdata->dev->name); ieee80211_if_del(local, tsdata, locked); } } kfree(sdata->u.norm.beacon_head); kfree(sdata->u.norm.beacon_tail); spin_lock_bh(&local->sub_if_lock); for (j = 0; j < local->bss_dev_count; j++) { if (sdata->dev == local->bss_devs[j]) { if (j + 1 < local->bss_dev_count) { memcpy(&local->bss_devs[j], &local->bss_devs[j + 1], (local->bss_dev_count - j - 1) * sizeof(local->bss_devs[0])); local->bss_devs[local->bss_dev_count - 1] = NULL; } else local->bss_devs[j] = NULL; local->bss_dev_count--; break; } } spin_unlock_bh(&local->sub_if_lock); if (sdata->dev != local->mdev) { struct sk_buff *skb; while ((skb = skb_dequeue(&sdata->u.norm.ps_bc_buf))) { local->total_ps_buffered--; dev_kfree_skb(skb); } } break; case IEEE80211_SUB_IF_TYPE_WDS: sta = sta_info_get(local, sdata->u.wds.remote_addr); if (sta) { sta_info_release(local, sta); sta_info_free(local, sta, 0); } else { #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: Someone had deleted my STA " "entry for the WDS link\n", sdata->dev->name); #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */ } break; case IEEE80211_SUB_IF_TYPE_STA: del_timer_sync(&sdata->u.sta.timer); if (local->scan_timer.data == (unsigned long) sdata->dev) del_timer_sync(&local->scan_timer); kfree(sdata->u.sta.extra_ie); sdata->u.sta.extra_ie = NULL; kfree(sdata->u.sta.assocreq_ies); sdata->u.sta.assocreq_ies = NULL; kfree(sdata->u.sta.assocresp_ies); sdata->u.sta.assocresp_ies = NULL; if (sdata->u.sta.probe_resp) { dev_kfree_skb(sdata->u.sta.probe_resp); sdata->u.sta.probe_resp = NULL; } for (i = 0; i < local->conf.bss_count; i++) { if (local->sta_devs[i] == sdata->dev) { local->sta_devs[i] = NULL; local->sta_dev_count--; break; } } break; } /* remove all STAs that are bound to this virtual interface */ sta_info_flush(local, sdata->dev); list_del(&sdata->list); ieee80211_proc_deinit_virtual(sdata->dev); if (locked) unregister_netdevice(sdata->dev); else unregister_netdev(sdata->dev); /* Default data device and management device are allocated with the * master device. All other devices are separately allocated and will * be freed here. */ if (sdata->dev != local->mdev && sdata->dev != local->wdev && sdata->dev != local->apdev) kfree(sdata->dev); } static int ieee80211_if_remove(struct net_device *dev, char *name, int id, int locked) { struct ieee80211_local *local = dev->priv; struct list_head *ptr, *n; /* Make sure not to touch sdata->master since it may * have already been deleted, etc. */ list_for_each_safe(ptr, n, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->type == id && strcmp(name, sdata->dev->name) == 0) { ieee80211_if_del(local, sdata, locked); break; } } return 0; } int ieee80211_if_remove_wds(struct net_device *dev, char *name, int locked) { return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_WDS, locked); } int ieee80211_if_remove_vlan(struct net_device *dev, char *name, int locked) { return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_VLAN, locked); } int ieee80211_if_remove_norm(struct net_device *dev, char *name, int locked) { return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_NORM, locked); } int ieee80211_if_remove_sta(struct net_device *dev, char *name, int locked) { return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_STA, locked); } int ieee80211_if_flush(struct net_device *dev, int locked) { struct ieee80211_local *local = dev->priv; struct list_head *ptr, *n; list_for_each_safe(ptr, n, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); if (sdata->dev != local->mdev && sdata->dev != local->wdev && sdata->dev != local->apdev) ieee80211_if_del(local, sdata, locked); } return 0; } static void ieee80211_precalc_rates(struct ieee80211_hw *hw) { struct ieee80211_hw_modes *mode; struct ieee80211_rate *rate; int m, r; for (m = 0; m < hw->num_modes; m++) { mode = &hw->modes[m]; for (r = 0; r < mode->num_rates; r++) { rate = &mode->rates[r]; rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate; } } } struct net_device *ieee80211_alloc_hw(size_t priv_data_len, void (*setup)(struct net_device *)) { struct net_device *dev, *apdev, *mdev; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int alloc_size; /* Ensure 32-bit alignment of our private data and hw private data. * Each net_device is followed by a sub_if_data which which is used * for wds/vlan information; it is aligned as well. * * Sample memory map looks something like: * * 0000 ***************** * * net_dev * * 015c ***************** * * sub_if * * 017c ***************** * * local * * 0b84 ***************** * * hw_priv * * 1664 ***************** * * ap net_dev * * 17c0 ***************** * * sub_if * * ***************** * * master net_dev* * ***************** * * sub_if * * ***************** */ alloc_size = sizeof(struct net_device) + sizeof(struct ieee80211_sub_if_data) + 3 + sizeof(struct ieee80211_local) + 3 + priv_data_len + 3 + sizeof(struct net_device) + 3 + sizeof(struct ieee80211_sub_if_data) + 3 + sizeof(struct net_device) + 3 + sizeof(struct ieee80211_sub_if_data) + 3 + 4096; mdev = (struct net_device *) kzalloc(alloc_size, GFP_KERNEL); if (mdev == NULL) return NULL; mdev->priv = (struct net_device *) (((long) mdev + sizeof(struct net_device) + sizeof(struct ieee80211_sub_if_data) + 3) & ~3); local = mdev->priv; local->hw_priv = (void *) (((long) local + sizeof(struct ieee80211_local) + 3) & ~3); apdev = (struct net_device *) (((long) local->hw_priv + priv_data_len + 3) & ~3); dev = (struct net_device *) (((long) apdev + sizeof(struct net_device) + sizeof(struct ieee80211_sub_if_data) + 3) & ~3); dev->priv = local; ether_setup(dev); memcpy(dev->name, "wlan%d", 7); dev->hard_start_xmit = ieee80211_subif_start_xmit; dev->do_ioctl = ieee80211_ioctl; dev->change_mtu = ieee80211_change_mtu; dev->tx_timeout = ieee80211_tx_timeout; dev->get_stats = ieee80211_get_stats; dev->open = ieee80211_open; dev->stop = ieee80211_stop; dev->tx_queue_len = 0; dev->set_mac_address = ieee80211_set_mac_address; local->wdev = dev; local->mdev = mdev; local->rx_handlers = ieee80211_rx_handlers; local->tx_handlers = ieee80211_tx_handlers; local->bridge_packets = 1; local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD; local->short_retry_limit = 7; local->long_retry_limit = 4; local->conf.calib_int = 60; local->rate_ctrl_num_up = RATE_CONTROL_NUM_UP; local->rate_ctrl_num_down = RATE_CONTROL_NUM_DOWN; local->conf.bss_count = 1; memset(local->conf.bssid_mask, 0xff, ETH_ALEN); local->bss_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL); if (local->bss_devs == NULL) goto fail; local->bss_devs[0] = local->wdev; local->bss_dev_count = 1; local->sta_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL); if (local->sta_devs == NULL) goto fail; local->sta_devs[0] = NULL; local->scan.in_scan = 0; local->hw_modes = (unsigned int) -1; init_timer(&local->scan.timer); /* clear it out */ spin_lock_init(&local->generic_lock); init_timer(&local->rate_limit_timer); local->rate_limit_timer.function = ieee80211_rate_limit; local->rate_limit_timer.data = (unsigned long) local; init_timer(&local->stat_timer); local->stat_timer.function = ieee80211_stat_refresh; local->stat_timer.data = (unsigned long) local; ieee80211_rx_bss_list_init(dev); sta_info_init(local); ieee80211_if_init(dev); sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->dev = dev; sdata->master = mdev; sdata->local = local; ieee80211_if_sdata_init(sdata); ieee80211_if_norm_init(sdata); list_add_tail(&sdata->list, &local->sub_if_list); if (strlen(dev->name) + 2 >= sizeof(dev->name)) goto fail; apdev = (struct net_device *) (((long) local->hw_priv + priv_data_len + 3) & ~3); local->apdev = apdev; ether_setup(apdev); apdev->priv = local; apdev->hard_start_xmit = ieee80211_mgmt_start_xmit; apdev->change_mtu = ieee80211_change_mtu_apdev; apdev->get_stats = ieee80211_get_stats; apdev->open = ieee80211_open; apdev->stop = ieee80211_stop; apdev->type = ARPHRD_IEEE80211_PRISM; apdev->hard_header_parse = header_parse_80211; apdev->tx_queue_len = 0; sprintf(apdev->name, "%sap", dev->name); sdata = IEEE80211_DEV_TO_SUB_IF(apdev); sdata->type = IEEE80211_SUB_IF_TYPE_MGMT; sdata->dev = apdev; sdata->master = mdev; sdata->local = local; list_add_tail(&sdata->list, &local->sub_if_list); ether_setup(mdev); mdev->hard_start_xmit = ieee80211_master_start_xmit; mdev->do_ioctl = ieee80211_ioctl; mdev->change_mtu = ieee80211_change_mtu; mdev->tx_timeout = ieee80211_tx_timeout; mdev->get_stats = ieee80211_get_stats; mdev->open = ieee80211_open; mdev->stop = ieee80211_stop; mdev->type = ARPHRD_IEEE80211; mdev->hard_header_parse = header_parse_80211; sprintf(mdev->name, "%s.11", dev->name); sdata = IEEE80211_DEV_TO_SUB_IF(mdev); sdata->type = IEEE80211_SUB_IF_TYPE_NORM; sdata->dev = mdev; sdata->master = mdev; sdata->local = local; list_add_tail(&sdata->list, &local->sub_if_list); tasklet_init(&local->tasklet, ieee80211_tasklet_handler, (unsigned long) local); skb_queue_head_init(&local->skb_queue); skb_queue_head_init(&local->skb_queue_unreliable); if (setup) setup(mdev); return mdev; fail: ieee80211_free_hw(mdev); return NULL; } int ieee80211_register_hw(struct net_device *dev, struct ieee80211_hw *hw) { struct ieee80211_local *local = dev->priv; int result; if (!hw) return -1; if (hw->version != IEEE80211_VERSION) { printk("ieee80211_register_hw - version mismatch: 80211.o " "version %d, low-level driver version %d\n", IEEE80211_VERSION, hw->version); return -1; } local->conf.mode = IW_MODE_MASTER; local->conf.beacon_int = 1000; ieee80211_update_hw(dev, hw); /* Don't care about the result. */ sta_info_start(local); result = register_netdev(local->wdev); if (result < 0) return -1; result = register_netdev(local->apdev); if (result < 0) goto fail_2nd_dev; if (hw->fraglist) dev->features |= NETIF_F_FRAGLIST; result = register_netdev(dev); if (result < 0) goto fail_3rd_dev; if (rate_control_initialize(local) < 0) { printk(KERN_DEBUG "%s: Failed to initialize rate control " "algorithm\n", dev->name); goto fail_rate; } /* TODO: add rtnl locking around device creation and qdisc install */ ieee80211_install_qdisc(dev); ieee80211_wep_init(local); ieee80211_proc_init_interface(local); return 0; fail_rate: unregister_netdev(dev); fail_3rd_dev: unregister_netdev(local->apdev); fail_2nd_dev: unregister_netdev(local->wdev); sta_info_stop(local); return result; } int ieee80211_update_hw(struct net_device *dev, struct ieee80211_hw *hw) { struct ieee80211_local *local = dev->priv; local->hw = hw; /* Backwards compatibility for low-level drivers that do not set number * of TX queues. */ if (hw->queues == 0) hw->queues = 1; memcpy(local->apdev->dev_addr, dev->dev_addr, ETH_ALEN); local->apdev->base_addr = dev->base_addr; local->apdev->irq = dev->irq; local->apdev->mem_start = dev->mem_start; local->apdev->mem_end = dev->mem_end; memcpy(local->wdev->dev_addr, dev->dev_addr, ETH_ALEN); local->wdev->base_addr = dev->base_addr; local->wdev->irq = dev->irq; local->wdev->mem_start = dev->mem_start; local->wdev->mem_end = dev->mem_end; if (!hw->modes || !hw->modes->channels || !hw->modes->rates || !hw->modes->num_channels || !hw->modes->num_rates) return -1; ieee80211_precalc_rates(hw); local->conf.phymode = hw->modes[0].mode; local->curr_rates = hw->modes[0].rates; local->num_curr_rates = hw->modes[0].num_rates; ieee80211_prepare_rates(dev); local->conf.freq = local->hw->modes[0].channels[0].freq; local->conf.channel = local->hw->modes[0].channels[0].chan; local->conf.channel_val = local->hw->modes[0].channels[0].val; /* FIXME: Invoke config to allow driver to set the channel. */ return 0; } void ieee80211_unregister_hw(struct net_device *dev) { struct ieee80211_local *local = dev->priv; struct list_head *ptr, *n; int i; tasklet_disable(&local->tasklet); /* TODO: skb_queue should be empty here, no need to do anything? */ if (local->rate_limit) del_timer_sync(&local->rate_limit_timer); if (local->stat_time) del_timer_sync(&local->stat_timer); if (local->scan_timer.data) del_timer_sync(&local->scan_timer); ieee80211_rx_bss_list_deinit(dev); list_for_each_safe(ptr, n, &local->sub_if_list) { struct ieee80211_sub_if_data *sdata = list_entry(ptr, struct ieee80211_sub_if_data, list); ieee80211_if_del(local, sdata, 0); } sta_info_stop(local); for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) if (local->fragments[i].skb) dev_kfree_skb(local->fragments[i].skb); for (i = 0; i < NUM_IEEE80211_MODES; i++) { kfree(local->supp_rates[i]); kfree(local->basic_rates[i]); } kfree(local->conf.ssid); kfree(local->conf.generic_elem); ieee80211_proc_deinit_interface(local); skb_queue_purge(&local->skb_queue); skb_queue_purge(&local->skb_queue_unreliable); rate_control_free(local); } void ieee80211_free_hw(struct net_device *dev) { struct ieee80211_local *local = dev->priv; kfree(local->sta_devs); kfree(local->bss_devs); kfree(dev); } /* Perform netif operations on all configured interfaces */ int ieee80211_netif_oper(struct net_device *sdev, Netif_Oper op) { struct ieee80211_local *local = sdev->priv; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(sdev); struct net_device *dev = sdata->master; switch (op) { case NETIF_ATTACH: netif_device_attach(dev); break; case NETIF_DETACH: netif_device_detach(dev); break; case NETIF_START: netif_start_queue(dev); break; case NETIF_STOP: break; case NETIF_WAKE: if (local->scan.in_scan == 0) { netif_wake_queue(dev); #if 1 if (/* FIX: 802.11 qdisc in use */ 1) __netif_schedule(dev); #endif } break; case NETIF_IS_STOPPED: if (netif_queue_stopped(dev)) return 1; break; case NETIF_UPDATE_TX_START: dev->trans_start = jiffies; break; } return 0; } void * ieee80211_dev_hw_data(struct net_device *dev) { struct ieee80211_local *local = dev->priv; return local->hw_priv; } void * ieee80211_dev_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &(sdata->stats); } int ieee80211_rate_control_register(struct rate_control_ops *ops) { struct rate_control_algs *alg; alg = kmalloc(sizeof(*alg), GFP_KERNEL); if (alg == NULL) { return -1; } memset(alg, 0, sizeof(*alg)); alg->next = ieee80211_rate_ctrl_algs; alg->ops = ops; ieee80211_rate_ctrl_algs = alg; return 0; } void ieee80211_rate_control_unregister(struct rate_control_ops *ops) { struct rate_control_algs *alg, *prev; prev = NULL; alg = ieee80211_rate_ctrl_algs; while (alg) { if (alg->ops == ops) { if (prev) prev->next = alg->next; else ieee80211_rate_ctrl_algs = alg->next; kfree(alg); break; } prev = alg; alg = alg->next; } } static int rate_control_initialize(struct ieee80211_local *local) { struct rate_control_algs *algs; for (algs = ieee80211_rate_ctrl_algs; algs; algs = algs->next) { local->rate_ctrl = algs->ops; local->rate_ctrl_priv = rate_control_alloc(local); if (local->rate_ctrl_priv) { printk(KERN_DEBUG "%s: Selected rate control " "algorithm '%s'\n", local->wdev->name, local->rate_ctrl->name); return 0; } } printk(KERN_WARNING "%s: Failed to select rate control algorithm\n", local->wdev->name); return -1; } static int __init ieee80211_init(void) { struct sk_buff *skb; if (sizeof(struct ieee80211_tx_packet_data) > (sizeof(skb->cb))) { printk("80211: ieee80211_tx_packet_data is bigger " "than the skb->cb (%d > %d)\n", (int) sizeof(struct ieee80211_tx_packet_data), (int) sizeof(skb->cb)); return -EINVAL; } if (sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)) { printk("80211: ieee80211_rx_status is bigger " "than the skb->cb (%d > %d)\n", (int) sizeof(struct ieee80211_rx_status), (int) sizeof(skb->cb)); return -EINVAL; } ieee80211_proc_init(); { int ret = ieee80211_wme_register(); if (ret) { printk(KERN_DEBUG "ieee80211_init: failed to " "initialize WME (err=%d)\n", ret); ieee80211_proc_deinit(); return ret; } } return 0; } static void __exit ieee80211_exit(void) { ieee80211_wme_unregister(); ieee80211_proc_deinit(); } EXPORT_SYMBOL(ieee80211_alloc_hw); EXPORT_SYMBOL(ieee80211_register_hw); EXPORT_SYMBOL(ieee80211_update_hw); EXPORT_SYMBOL(ieee80211_unregister_hw); EXPORT_SYMBOL(ieee80211_free_hw); EXPORT_SYMBOL(ieee80211_rx); EXPORT_SYMBOL(ieee80211_tx_status); EXPORT_SYMBOL(ieee80211_beacon_get); EXPORT_SYMBOL(ieee80211_get_buffered_bc); EXPORT_SYMBOL(ieee80211_netif_oper); EXPORT_SYMBOL(ieee80211_dev_hw_data); EXPORT_SYMBOL(ieee80211_dev_stats); EXPORT_SYMBOL(ieee80211_get_hw_conf); EXPORT_SYMBOL(ieee80211_set_aid_for_sta); EXPORT_SYMBOL(ieee80211_rx_irqsafe); EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); EXPORT_SYMBOL(ieee80211_get_hdrlen); EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); EXPORT_SYMBOL(ieee80211_rate_control_register); EXPORT_SYMBOL(ieee80211_rate_control_unregister); EXPORT_SYMBOL(sta_info_get); EXPORT_SYMBOL(sta_info_release); EXPORT_SYMBOL(ieee80211_radar_status); module_init(ieee80211_init); module_exit(ieee80211_exit);