/* * $Id$ * * Copyright (C) 2006, 2007 OpenWrt.org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include /* printk() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Eugene Konev"); MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)"); MODULE_LICENSE("GPL"); static int rx_ring_size = 64; static int disable_napi = 0; module_param(rx_ring_size, int, 64); module_param(disable_napi, int, 0); MODULE_PARM_DESC(rx_ring_size, "Size of rx ring (in skbs)"); MODULE_PARM_DESC(disable_napi, "Disable NAPI polling"); /* Register definitions */ struct cpmac_control_regs { volatile u32 revision; volatile u32 control; volatile u32 teardown; volatile u32 unused; } __attribute__ ((packed)); struct cpmac_int_regs { volatile u32 stat_raw; volatile u32 stat_masked; volatile u32 enable; volatile u32 clear; } __attribute__ ((packed)); struct cpmac_stats { volatile u32 good; volatile u32 bcast; volatile u32 mcast; volatile u32 pause; volatile u32 crc_error; volatile u32 align_error; volatile u32 oversized; volatile u32 jabber; volatile u32 undersized; volatile u32 fragment; volatile u32 filtered; volatile u32 qos_filtered; volatile u32 octets; } __attribute__ ((packed)); struct cpmac_regs { struct cpmac_control_regs tx_ctrl; struct cpmac_control_regs rx_ctrl; volatile u32 unused1[56]; volatile u32 mbp; /* MBP bits */ #define MBP_RXPASSCRC 0x40000000 #define MBP_RXQOS 0x20000000 #define MBP_RXNOCHAIN 0x10000000 #define MBP_RXCMF 0x01000000 #define MBP_RXSHORT 0x00800000 #define MBP_RXCEF 0x00400000 #define MBP_RXPROMISC 0x00200000 #define MBP_PROMISCCHAN(chan) (((chan) & 0x7) << 16) #define MBP_RXBCAST 0x00002000 #define MBP_BCASTCHAN(chan) (((chan) & 0x7) << 8) #define MBP_RXMCAST 0x00000020 #define MBP_MCASTCHAN(chan) ((chan) & 0x7) volatile u32 unicast_enable; volatile u32 unicast_clear; volatile u32 max_len; volatile u32 buffer_offset; volatile u32 filter_flow_threshold; volatile u32 unused2[2]; volatile u32 flow_thre[8]; volatile u32 free_buffer[8]; volatile u32 mac_control; #define MAC_TXPTYPE 0x00000200 #define MAC_TXPACE 0x00000040 #define MAC_MII 0x00000020 #define MAC_TXFLOW 0x00000010 #define MAC_RXFLOW 0x00000008 #define MAC_MTEST 0x00000004 #define MAC_LOOPBACK 0x00000002 #define MAC_FDX 0x00000001 volatile u32 mac_status; #define MACST_QOS 0x4 #define MACST_RXFLOW 0x2 #define MACST_TXFLOW 0x1 volatile u32 emc_control; volatile u32 unused3; struct cpmac_int_regs tx_int; volatile u32 mac_int_vector; /* Int Status bits */ #define INTST_STATUS 0x80000 #define INTST_HOST 0x40000 #define INTST_RX 0x20000 #define INTST_TX 0x10000 volatile u32 mac_eoi_vector; volatile u32 unused4[2]; struct cpmac_int_regs rx_int; volatile u32 mac_int_stat_raw; volatile u32 mac_int_stat_masked; volatile u32 mac_int_enable; volatile u32 mac_int_clear; volatile u32 mac_addr_low[8]; volatile u32 mac_addr_mid; volatile u32 mac_addr_high; volatile u32 mac_hash_low; volatile u32 mac_hash_high; volatile u32 boff_test; volatile u32 pac_test; volatile u32 rx_pause; volatile u32 tx_pause; volatile u32 unused5[2]; struct cpmac_stats rx_stats; struct cpmac_stats tx_stats; volatile u32 unused6[232]; volatile u32 tx_ptr[8]; volatile u32 rx_ptr[8]; volatile u32 tx_ack[8]; volatile u32 rx_ack[8]; } __attribute__ ((packed)); struct cpmac_mdio_regs { volatile u32 version; volatile u32 control; #define MDIOC_IDLE 0x80000000 #define MDIOC_ENABLE 0x40000000 #define MDIOC_PREAMBLE 0x00100000 #define MDIOC_FAULT 0x00080000 #define MDIOC_FAULTDETECT 0x00040000 #define MDIOC_INTTEST 0x00020000 #define MDIOC_CLKDIV(div) ((div) & 0xff) volatile u32 alive; volatile u32 link; struct cpmac_int_regs link_int; struct cpmac_int_regs user_int; u32 unused[20]; volatile u32 access; #define MDIO_BUSY 0x80000000 #define MDIO_WRITE 0x40000000 #define MDIO_REG(reg) (((reg) & 0x1f) << 21) #define MDIO_PHY(phy) (((phy) & 0x1f) << 16) #define MDIO_DATA(data) ((data) & 0xffff) volatile u32 physel; } __attribute__ ((packed)); /* Descriptor */ struct cpmac_desc { u32 hw_next; u32 hw_data; u16 buflen; u16 bufflags; u16 datalen; u16 dataflags; /* Flags bits */ #define CPMAC_SOP 0x8000 #define CPMAC_EOP 0x4000 #define CPMAC_OWN 0x2000 #define CPMAC_EOQ 0x1000 struct sk_buff *skb; struct cpmac_desc *next; } __attribute__ ((packed)); struct cpmac_priv { struct net_device_stats stats; spinlock_t lock; struct sk_buff *skb_pool; int free_skbs; struct cpmac_desc *rx_head; int tx_head, tx_tail; struct cpmac_desc *desc_ring; struct cpmac_regs *regs; struct mii_bus *mii_bus; struct phy_device *phy; char phy_name[BUS_ID_SIZE]; struct plat_cpmac_data *config; int oldlink, oldspeed, oldduplex; u32 msg_enable; struct net_device *dev; struct work_struct alloc_work; }; static irqreturn_t cpmac_irq(int, void *); static void cpmac_reset(struct net_device *dev); static void cpmac_hw_init(struct net_device *dev); static int cpmac_stop(struct net_device *dev); static int cpmac_open(struct net_device *dev); #define CPMAC_LOW_THRESH 32 #define CPMAC_ALLOC_SIZE 64 #define CPMAC_SKB_SIZE 1518 #define CPMAC_TX_RING_SIZE 8 #ifdef CPMAC_DEBUG static void cpmac_dump_regs(u32 *base, int count) { int i; for (i = 0; i < (count + 3) / 4; i++) { if (i % 4 == 0) printk("\nCPMAC[0x%04x]:", i * 4); printk(" 0x%08x", *(base + i)); } printk("\n"); } #endif static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int regnum) { struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv; volatile u32 val; while ((val = regs->access) & MDIO_BUSY); regs->access = MDIO_BUSY | MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f); while ((val = regs->access) & MDIO_BUSY); return val & 0xffff; } static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int regnum, u16 val) { struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv; volatile u32 tmp; while ((tmp = regs->access) & MDIO_BUSY); regs->access = MDIO_BUSY | MDIO_WRITE | MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f) | val; return 0; } static int cpmac_mdio_reset(struct mii_bus *bus) { struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv; ar7_device_reset(AR7_RESET_BIT_MDIO); regs->control = MDIOC_ENABLE | MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1); return 0; } static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, }; static struct mii_bus cpmac_mii = { .name = "cpmac-mii", .read = cpmac_mdio_read, .write = cpmac_mdio_write, .reset = cpmac_mdio_reset, .irq = mii_irqs, }; static int cpmac_config(struct net_device *dev, struct ifmap *map) { if (dev->flags & IFF_UP) return -EBUSY; /* Don't allow changing the I/O address */ if (map->base_addr != dev->base_addr) return -EOPNOTSUPP; /* ignore other fields */ return 0; } static int cpmac_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; if (dev->flags & IFF_UP) return -EBUSY; memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); return 0; } static void cpmac_set_multicast_list(struct net_device *dev) { struct dev_mc_list *iter; int i; int hash, tmp; int hashlo = 0, hashhi = 0; struct cpmac_priv *priv = netdev_priv(dev); if(dev->flags & IFF_PROMISC) { priv->regs->mbp &= ~MBP_PROMISCCHAN(0); /* promisc channel 0 */ priv->regs->mbp |= MBP_RXPROMISC; } else { priv->regs->mbp &= ~MBP_RXPROMISC; if(dev->flags & IFF_ALLMULTI) { /* enable all multicast mode */ priv->regs->mac_hash_low = 0xffffffff; priv->regs->mac_hash_high = 0xffffffff; } else { for(i = 0, iter = dev->mc_list; i < dev->mc_count; i++, iter = iter->next) { hash = 0; tmp = iter->dmi_addr[0]; hash ^= (tmp >> 2) ^ (tmp << 4); tmp = iter->dmi_addr[1]; hash ^= (tmp >> 4) ^ (tmp << 2); tmp = iter->dmi_addr[2]; hash ^= (tmp >> 6) ^ tmp; tmp = iter->dmi_addr[4]; hash ^= (tmp >> 2) ^ (tmp << 4); tmp = iter->dmi_addr[5]; hash ^= (tmp >> 4) ^ (tmp << 2); tmp = iter->dmi_addr[6]; hash ^= (tmp >> 6) ^ tmp; hash &= 0x3f; if(hash < 32) { hashlo |= 1<regs->mac_hash_low = hashlo; priv->regs->mac_hash_high = hashhi; } } } static struct sk_buff *cpmac_get_skb(struct net_device *dev) { struct sk_buff *skb; struct cpmac_priv *priv = netdev_priv(dev); skb = priv->skb_pool; if (likely(skb)) { priv->skb_pool = skb->next; } else { skb = dev_alloc_skb(CPMAC_SKB_SIZE + 2); if (skb) { skb->next = NULL; skb_reserve(skb, 2); skb->dev = priv->dev; } } if (likely(priv->free_skbs)) priv->free_skbs--; if (priv->free_skbs < CPMAC_LOW_THRESH) schedule_work(&priv->alloc_work); return skb; } static inline struct sk_buff *cpmac_rx_one(struct net_device *dev, struct cpmac_priv *priv, struct cpmac_desc *desc) { unsigned long flags; char *data; struct sk_buff *skb, *result = NULL; priv->regs->rx_ack[0] = virt_to_phys(desc); if (unlikely(!desc->datalen)) { if (printk_ratelimit()) printk(KERN_WARNING "%s: rx: spurious interrupt\n", dev->name); priv->stats.rx_errors++; return NULL; } spin_lock_irqsave(&priv->lock, flags); skb = cpmac_get_skb(dev); if (likely(skb)) { data = (char *)phys_to_virt(desc->hw_data); dma_cache_inv((u32)data, desc->datalen); skb_put(desc->skb, desc->datalen); desc->skb->protocol = eth_type_trans(desc->skb, dev); desc->skb->ip_summed = CHECKSUM_NONE; priv->stats.rx_packets++; priv->stats.rx_bytes += desc->datalen; result = desc->skb; desc->skb = skb; } else { #ifdef CPMAC_DEBUG if (printk_ratelimit()) printk("%s: low on skbs, dropping packet\n", dev->name); #endif priv->stats.rx_dropped++; } spin_unlock_irqrestore(&priv->lock, flags); desc->hw_data = virt_to_phys(desc->skb->data); desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; dma_cache_wback((u32)desc, 16); return result; } static void cpmac_rx(struct net_device *dev) { struct sk_buff *skb; struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); spin_lock(&priv->lock); if (unlikely(!priv->rx_head)) { spin_unlock(&priv->lock); return; } desc = priv->rx_head; dma_cache_inv((u32)desc, 16); while ((desc->dataflags & CPMAC_OWN) == 0) { skb = cpmac_rx_one(dev, priv, desc); if (likely(skb)) { netif_rx(skb); } desc = desc->next; dma_cache_inv((u32)desc, 16); } priv->rx_head = desc; priv->regs->rx_ptr[0] = virt_to_phys(desc); spin_unlock(&priv->lock); } static int cpmac_poll(struct net_device *dev, int *budget) { struct sk_buff *skb; struct cpmac_desc *desc; int received = 0, quota = min(dev->quota, *budget); struct cpmac_priv *priv = netdev_priv(dev); if (unlikely(!priv->rx_head)) { if (printk_ratelimit()) printk(KERN_WARNING "%s: rx: polling, but no queue\n", dev->name); netif_rx_complete(dev); return 0; } desc = priv->rx_head; dma_cache_inv((u32)desc, 16); while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) { skb = cpmac_rx_one(dev, priv, desc); if (likely(skb)) { netif_receive_skb(skb); received++; } desc = desc->next; priv->rx_head = desc; dma_cache_inv((u32)desc, 16); } *budget -= received; dev->quota -= received; #ifdef CPMAC_DEBUG printk("%s: processed %d packets\n", dev->name, received); #endif if (desc->dataflags & CPMAC_OWN) { priv->regs->rx_ptr[0] = virt_to_phys(desc); netif_rx_complete(dev); priv->regs->rx_int.enable = 0x1; priv->regs->rx_int.clear = 0xfe; return 0; } return 1; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) static void cpmac_alloc_skbs(struct work_struct *work) { struct cpmac_priv *priv = container_of(work, struct cpmac_priv, alloc_work); #else static void cpmac_alloc_skbs(void *data) { struct net_device *dev = (struct net_device*)data; struct cpmac_priv *priv = netdev_priv(dev); #endif unsigned long flags; int i, num_skbs = 0; struct sk_buff *skb, *skbs = NULL; for (i = 0; i < CPMAC_ALLOC_SIZE; i++) { skb = alloc_skb(CPMAC_SKB_SIZE + 2, GFP_KERNEL); if (!skb) break; skb->next = skbs; skb_reserve(skb, 2); skb->dev = priv->dev; num_skbs++; skbs = skb; } if (skbs) { spin_lock_irqsave(&priv->lock, flags); for (skb = priv->skb_pool; skb && skb->next; skb = skb->next); if (!skb) { priv->skb_pool = skbs; } else { skb->next = skbs; } priv->free_skbs += num_skbs; spin_unlock_irqrestore(&priv->lock, flags); #ifdef CPMAC_DEBUG printk("%s: allocated %d skbs\n", priv->dev->name, num_skbs); #endif } } static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long flags; int len, chan; struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); len = skb->len; if (unlikely(len < ETH_ZLEN)) { if (unlikely(skb_padto(skb, ETH_ZLEN))) { if (printk_ratelimit()) printk(KERN_NOTICE "%s: padding failed, dropping\n", dev->name); spin_lock_irqsave(&priv->lock, flags); priv->stats.tx_dropped++; spin_unlock_irqrestore(&priv->lock, flags); return -ENOMEM; } len = ETH_ZLEN; } spin_lock_irqsave(&priv->lock, flags); chan = priv->tx_tail++; priv->tx_tail %= 8; if (priv->tx_tail == priv->tx_head) netif_stop_queue(dev); desc = &priv->desc_ring[chan]; dma_cache_inv((u32)desc, 16); if (desc->dataflags & CPMAC_OWN) { printk(KERN_NOTICE "%s: tx dma ring full, dropping\n", dev->name); priv->stats.tx_dropped++; spin_unlock_irqrestore(&priv->lock, flags); return -ENOMEM; } dev->trans_start = jiffies; desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN; desc->skb = skb; desc->hw_data = virt_to_phys(skb->data); dma_cache_wback((u32)skb->data, len); desc->buflen = len; desc->datalen = len; desc->hw_next = 0; dma_cache_wback((u32)desc, 16); priv->regs->tx_ptr[chan] = virt_to_phys(desc); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static void cpmac_end_xmit(struct net_device *dev, int channel) { struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); spin_lock(&priv->lock); desc = &priv->desc_ring[channel]; priv->regs->tx_ack[channel] = virt_to_phys(desc); if (likely(desc->skb)) { priv->stats.tx_packets++; priv->stats.tx_bytes += desc->skb->len; dev_kfree_skb_irq(desc->skb); if (netif_queue_stopped(dev)) netif_wake_queue(dev); } else { if (printk_ratelimit()) printk(KERN_NOTICE "%s: end_xmit: spurious interrupt\n", dev->name); } spin_unlock(&priv->lock); } static void cpmac_reset(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); ar7_device_reset(priv->config->reset_bit); priv->regs->rx_ctrl.control &= ~1; priv->regs->tx_ctrl.control &= ~1; for (i = 0; i < 8; i++) { priv->regs->tx_ptr[i] = 0; priv->regs->rx_ptr[i] = 0; } priv->regs->mac_control &= ~MAC_MII; /* disable mii */ } static inline void cpmac_free_rx_ring(struct net_device *dev) { struct cpmac_desc *desc; int i; struct cpmac_priv *priv = netdev_priv(dev); if (unlikely(!priv->rx_head)) return; desc = priv->rx_head; dma_cache_inv((u32)desc, 16); for (i = 0; i < rx_ring_size; i++) { desc->buflen = CPMAC_SKB_SIZE; if ((desc->dataflags & CPMAC_OWN) == 0) { desc->dataflags = CPMAC_OWN; priv->stats.rx_dropped++; } dma_cache_wback((u32)desc, 16); desc = desc->next; dma_cache_inv((u32)desc, 16); } } static irqreturn_t cpmac_irq(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct cpmac_priv *priv = netdev_priv(dev); u32 status; if (!dev) return IRQ_NONE; status = priv->regs->mac_int_vector; if (status & INTST_TX) { cpmac_end_xmit(dev, (status & 7)); } if (status & INTST_RX) { if (disable_napi) { cpmac_rx(dev); } else { priv->regs->rx_int.enable = 0; priv->regs->rx_int.clear = 0xff; netif_rx_schedule(dev); } } priv->regs->mac_eoi_vector = 0; if (unlikely(status & (INTST_HOST | INTST_STATUS))) { printk(KERN_ERR "%s: hw error, resetting...\n", dev->name); spin_lock(&priv->lock); phy_stop(priv->phy); cpmac_reset(dev); cpmac_free_rx_ring(dev); cpmac_hw_init(dev); spin_unlock(&priv->lock); } return IRQ_HANDLED; } static void cpmac_tx_timeout(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_desc *desc; priv->stats.tx_errors++; desc = &priv->desc_ring[priv->tx_head++]; priv->tx_head %= 8; printk("%s: transmit timeout\n", dev->name); if (desc->skb) dev_kfree_skb(desc->skb); netif_wake_queue(dev); } static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!(netif_running(dev))) return -EINVAL; if (!priv->phy) return -EINVAL; if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) || (cmd == SIOCSMIIREG)) return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd); return -EINVAL; } static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (priv->phy) return phy_ethtool_gset(priv->phy, cmd); return -EINVAL; } static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (priv->phy) return phy_ethtool_sset(priv->phy, cmd); return -EINVAL; } static void cpmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, "cpmac"); strcpy(info->version, "0.0.3"); info->fw_version[0] = '\0'; sprintf(info->bus_info, "%s", "cpmac"); info->regdump_len = 0; } static const struct ethtool_ops cpmac_ethtool_ops = { .get_settings = cpmac_get_settings, .set_settings = cpmac_set_settings, .get_drvinfo = cpmac_get_drvinfo, .get_link = ethtool_op_get_link, }; static struct net_device_stats *cpmac_stats(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); if (netif_device_present(dev)) return &priv->stats; return NULL; } static int cpmac_change_mtu(struct net_device *dev, int mtu) { unsigned long flags; struct cpmac_priv *priv = netdev_priv(dev); spinlock_t *lock = &priv->lock; if ((mtu < 68) || (mtu > 1500)) return -EINVAL; spin_lock_irqsave(lock, flags); dev->mtu = mtu; spin_unlock_irqrestore(lock, flags); return 0; } static void cpmac_adjust_link(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); unsigned long flags; int new_state = 0; spin_lock_irqsave(&priv->lock, flags); if (priv->phy->link) { if (priv->phy->duplex != priv->oldduplex) { new_state = 1; priv->oldduplex = priv->phy->duplex; } if (priv->phy->speed != priv->oldspeed) { new_state = 1; priv->oldspeed = priv->phy->speed; } if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; netif_schedule(dev); } } else if (priv->oldlink) { new_state = 1; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (new_state) phy_print_status(priv->phy); spin_unlock_irqrestore(&priv->lock, flags); } static void cpmac_hw_init(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); for (i = 0; i < 8; i++) priv->regs->tx_ptr[i] = 0; priv->regs->rx_ptr[0] = virt_to_phys(priv->rx_head); priv->regs->mbp = MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST; priv->regs->unicast_enable = 0x1; priv->regs->unicast_clear = 0xfe; priv->regs->buffer_offset = 0; for (i = 0; i < 8; i++) priv->regs->mac_addr_low[i] = dev->dev_addr[5]; priv->regs->mac_addr_mid = dev->dev_addr[4]; priv->regs->mac_addr_high = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); priv->regs->max_len = CPMAC_SKB_SIZE; priv->regs->rx_int.enable = 0x1; priv->regs->rx_int.clear = 0xfe; priv->regs->tx_int.enable = 0xff; priv->regs->tx_int.clear = 0; priv->regs->mac_int_enable = 3; priv->regs->mac_int_clear = 0xfc; priv->regs->rx_ctrl.control |= 1; priv->regs->tx_ctrl.control |= 1; priv->regs->mac_control |= MAC_MII | MAC_FDX; priv->phy->state = PHY_CHANGELINK; phy_start(priv->phy); } static int cpmac_open(struct net_device *dev) { int i, size, res; struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_desc *desc; struct sk_buff *skb; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0, PHY_INTERFACE_MODE_MII); #else priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0); #endif if (IS_ERR(priv->phy)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(priv->phy); } if (!request_mem_region(dev->mem_start, dev->mem_end - dev->mem_start, dev->name)) { printk("%s: failed to request registers\n", dev->name); res = -ENXIO; goto fail_reserve; } priv->regs = ioremap_nocache(dev->mem_start, dev->mem_end - dev->mem_start); if (!priv->regs) { printk("%s: failed to remap registers\n", dev->name); res = -ENXIO; goto fail_remap; } priv->rx_head = NULL; size = sizeof(struct cpmac_desc) * (rx_ring_size + CPMAC_TX_RING_SIZE); priv->desc_ring = (struct cpmac_desc *)kmalloc(size, GFP_KERNEL); if (!priv->desc_ring) { res = -ENOMEM; goto fail_alloc; } memset((char *)priv->desc_ring, 0, size); priv->skb_pool = NULL; priv->free_skbs = 0; priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE]; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs); #else INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs, dev); #endif schedule_work(&priv->alloc_work); flush_scheduled_work(); for (i = 0; i < rx_ring_size; i++) { desc = &priv->rx_head[i]; skb = cpmac_get_skb(dev); if (!skb) { res = -ENOMEM; goto fail_desc; } desc->skb = skb; desc->hw_data = virt_to_phys(skb->data); desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; desc->next = &priv->rx_head[(i + 1) % rx_ring_size]; desc->hw_next = virt_to_phys(desc->next); dma_cache_wback((u32)desc, 16); } if((res = request_irq(dev->irq, cpmac_irq, SA_INTERRUPT, dev->name, dev))) { printk("%s: failed to obtain irq\n", dev->name); goto fail_irq; } cpmac_reset(dev); cpmac_hw_init(dev); netif_start_queue(dev); return 0; fail_irq: fail_desc: for (i = 0; i < rx_ring_size; i++) if (priv->rx_head[i].skb) kfree_skb(priv->rx_head[i].skb); fail_alloc: kfree(priv->desc_ring); for (skb = priv->skb_pool; skb; skb = priv->skb_pool) { priv->skb_pool = skb->next; kfree_skb(skb); } iounmap(priv->regs); fail_remap: release_mem_region(dev->mem_start, dev->mem_end - dev->mem_start); fail_reserve: phy_disconnect(priv->phy); return res; } static int cpmac_stop(struct net_device *dev) { int i; struct sk_buff *skb; struct cpmac_priv *priv = netdev_priv(dev); netif_stop_queue(dev); phy_stop(priv->phy); phy_disconnect(priv->phy); priv->phy = NULL; cpmac_reset(dev); for (i = 0; i < 8; i++) { priv->regs->rx_ptr[i] = 0; priv->regs->tx_ptr[i] = 0; priv->regs->mbp = 0; } free_irq(dev->irq, dev); release_mem_region(dev->mem_start, dev->mem_end - dev->mem_start); cancel_delayed_work(&priv->alloc_work); flush_scheduled_work(); priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE]; for (i = 0; i < rx_ring_size; i++) if (priv->rx_head[i].skb) kfree_skb(priv->rx_head[i].skb); kfree(priv->desc_ring); for (skb = priv->skb_pool; skb; skb = priv->skb_pool) { priv->skb_pool = skb->next; kfree_skb(skb); } return 0; } static int external_switch = 0; static int __devinit cpmac_probe(struct platform_device *pdev) { int i, rc, phy_id; struct resource *res; struct cpmac_priv *priv; struct net_device *dev; struct plat_cpmac_data *pdata; if (strcmp(pdev->name, "cpmac") != 0) return -ENODEV; pdata = pdev->dev.platform_data; for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) { if (!(pdata->phy_mask & (1 << phy_id))) continue; if (!cpmac_mii.phy_map[phy_id]) continue; break; } if (phy_id == PHY_MAX_ADDR) { if (external_switch) { phy_id = 0; } else { printk("cpmac: no PHY present\n"); return -ENODEV; } } dev = alloc_etherdev(sizeof(struct cpmac_priv)); if (!dev) { printk(KERN_ERR "cpmac: Unable to allocate net_device structure!\n"); return -ENOMEM; } SET_MODULE_OWNER(dev); platform_set_drvdata(pdev, dev); priv = netdev_priv(dev); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); if (!res) { rc = -ENODEV; goto fail; } dev->mem_start = res->start; dev->mem_end = res->end; dev->irq = platform_get_irq_byname(pdev, "irq"); dev->mtu = 1500; dev->open = cpmac_open; dev->stop = cpmac_stop; dev->set_config = cpmac_config; dev->hard_start_xmit = cpmac_start_xmit; dev->do_ioctl = cpmac_ioctl; dev->get_stats = cpmac_stats; dev->change_mtu = cpmac_change_mtu; dev->set_mac_address = cpmac_set_mac_address; dev->set_multicast_list = cpmac_set_multicast_list; dev->tx_timeout = cpmac_tx_timeout; dev->ethtool_ops = &cpmac_ethtool_ops; if (!disable_napi) { dev->poll = cpmac_poll; dev->weight = min(rx_ring_size, 64); } memset(priv, 0, sizeof(struct cpmac_priv)); spin_lock_init(&priv->lock); priv->msg_enable = netif_msg_init(NETIF_MSG_WOL, 0x3fff); priv->config = pdata; priv->dev = dev; memcpy(dev->dev_addr, priv->config->dev_addr, sizeof(dev->dev_addr)); if (phy_id == 31) { snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT, cpmac_mii.id, phy_id); } else { snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1); } if ((rc = register_netdev(dev))) { printk("cpmac: error %i registering device %s\n", rc, dev->name); goto fail; } printk("cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: ", dev->name, (u32 *)dev->mem_start, dev->irq, priv->phy_name); for (i = 0; i < 6; i++) { printk("%02x", dev->dev_addr[i]); if (i < 5) printk(":"); else printk(")\n"); } return 0; fail: free_netdev(dev); return rc; } static int __devexit cpmac_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); free_netdev(dev); return 0; } static struct platform_driver cpmac_driver = { .driver.name = "cpmac", .probe = cpmac_probe, .remove = cpmac_remove, }; int __devinit cpmac_init(void) { volatile u32 mask; int i, res; cpmac_mii.priv = (struct cpmac_mdio_regs *) ioremap_nocache(AR7_REGS_MDIO, sizeof(struct cpmac_mdio_regs)); if (!cpmac_mii.priv) { printk("Can't ioremap mdio registers\n"); return -ENXIO; } #warning FIXME: unhardcode gpio&reset bits ar7_gpio_disable(26); ar7_gpio_disable(27); ar7_device_reset(17); ar7_device_reset(21); ar7_device_reset(26); cpmac_mii.reset(&cpmac_mii); for (i = 0; i < 300000; i++) { mask = ((struct cpmac_mdio_regs *)cpmac_mii.priv)->alive; if (mask) break; } mask &= 0x7fffffff; if (mask & (mask - 1)) { external_switch = 1; mask = 0; } cpmac_mii.phy_mask = ~(mask | 0x80000000); res = mdiobus_register(&cpmac_mii); if (res) goto fail_mii; res = platform_driver_register(&cpmac_driver); if (res) goto fail_cpmac; return 0; fail_cpmac: mdiobus_unregister(&cpmac_mii); fail_mii: iounmap(cpmac_mii.priv); return res; } void __devexit cpmac_exit(void) { platform_driver_unregister(&cpmac_driver); mdiobus_unregister(&cpmac_mii); } module_init(cpmac_init); module_exit(cpmac_exit);