/* * ADM5120 built in ethernet switch driver * * Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005 * * Inspiration for this driver came from the original ADMtek 2.4 * driver, Copyright ADMtek Inc. * * NAPI extensions by Thomas Langer (Thomas.Langer@infineon.com) * and Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007 * * TODO: Add support of high prio queues (currently disabled) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adm5120sw.h" #define DRV_NAME "adm5120-switch" #define DRV_DESC "ADM5120 built-in ethernet switch driver" #define DRV_VERSION "0.1.0" MODULE_AUTHOR("Jeroen Vreeken (pe1rxq@amsat.org)"); MODULE_DESCRIPTION("ADM5120 ethernet switch driver"); MODULE_LICENSE("GPL"); /* ------------------------------------------------------------------------ */ #if 1 /*def ADM5120_SWITCH_DEBUG*/ #define SW_DBG(f, a...) printk(KERN_DEBUG "%s: " f, DRV_NAME , ## a) #else #define SW_DBG(f, a...) do {} while (0) #endif #define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a) #define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a) #define SWITCH_NUM_PORTS 6 #define ETH_CSUM_LEN 4 #define RX_MAX_PKTLEN 1550 #define RX_RING_SIZE 64 #define TX_RING_SIZE 32 #define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */ #define TX_TIMEOUT HZ*400 #define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32) #define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD) #define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF) #define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF) #define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH) #define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \ SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \ SWITCH_INT_CPQF | SWITCH_INT_GQF) #define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \ SWITCH_INTS_ERR | SWITCH_INTS_Q | \ SWITCH_INT_MD | SWITCH_INT_PSC) #define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC) #define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF) /* ------------------------------------------------------------------------ */ struct dma_desc { __u32 buf1; #define DESC_OWN (1UL << 31) /* Owned by the switch */ #define DESC_EOR (1UL << 28) /* End of Ring */ #define DESC_ADDR_MASK 0x1FFFFFF #define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK) __u32 buf2; #define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */ __u32 buflen; __u32 misc; /* definitions for tx/rx descriptors */ #define DESC_PKTLEN_SHIFT 16 #define DESC_PKTLEN_MASK 0x7FF /* tx descriptor specific part */ #define DESC_CSUM (1UL << 31) /* Append checksum */ #define DESC_DSTPORT_SHIFT 8 #define DESC_DSTPORT_MASK 0x3F #define DESC_VLAN_MASK 0x3F /* rx descriptor specific part */ #define DESC_SRCPORT_SHIFT 12 #define DESC_SRCPORT_MASK 0x7 #define DESC_DA_MASK 0x3 #define DESC_DA_SHIFT 4 #define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */ #define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */ #define DESC_TYPE_MASK 0x3 /* mask for Packet type */ #define DESC_TYPE_IP 0x0 /* IP packet */ #define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */ } __attribute__ ((aligned(16))); static inline u32 desc_get_srcport(struct dma_desc *desc) { return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK; } static inline u32 desc_get_pktlen(struct dma_desc *desc) { return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK; } static inline int desc_ipcsum_fail(struct dma_desc *desc) { return ((desc->misc & DESC_IPCSUM_FAIL) != 0); } /* ------------------------------------------------------------------------ */ /* default settings - unlimited TX and RX on all ports, default shaper mode */ static unsigned char bw_matrix[SWITCH_NUM_PORTS] = { 0, 0, 0, 0, 0, 0 }; static int adm5120_nrdevs; static struct net_device *adm5120_devs[SWITCH_NUM_PORTS]; /* Lookup table port -> device */ static struct net_device *adm5120_port[SWITCH_NUM_PORTS]; static struct dma_desc txh_descs_v[TX_RING_SIZE] __attribute__((aligned(16))); static struct dma_desc txl_descs_v[TX_RING_SIZE] __attribute__((aligned(16))); static struct dma_desc rxh_descs_v[RX_RING_SIZE] __attribute__((aligned(16))); static struct dma_desc rxl_descs_v[RX_RING_SIZE] __attribute__((aligned(16))); static struct dma_desc *txh_descs; static struct dma_desc *txl_descs; static struct dma_desc *rxh_descs; static struct dma_desc *rxl_descs; static struct sk_buff *rxl_skbuff[RX_RING_SIZE]; static struct sk_buff *rxh_skbuff[RX_RING_SIZE]; static struct sk_buff *txl_skbuff[TX_RING_SIZE]; static struct sk_buff *txh_skbuff[TX_RING_SIZE]; static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */ static unsigned int cur_txl, dirty_txl; static unsigned int sw_used; static spinlock_t sw_lock = SPIN_LOCK_UNLOCKED; static struct net_device sw_dev; /* ------------------------------------------------------------------------ */ static inline u32 sw_read_reg(u32 reg) { return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg); } static inline void sw_write_reg(u32 reg, u32 val) { __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg); } static inline void sw_int_disable(u32 mask) { u32 t; t = sw_read_reg(SWITCH_REG_INT_MASK); t |= mask; sw_write_reg(SWITCH_REG_INT_MASK, t); } static inline void sw_int_enable(u32 mask) { u32 t; t = sw_read_reg(SWITCH_REG_INT_MASK); t &= ~mask; sw_write_reg(SWITCH_REG_INT_MASK, t); } static inline void sw_int_ack(u32 mask) { sw_write_reg(SWITCH_REG_INT_STATUS, mask); } /* ------------------------------------------------------------------------ */ static void sw_dump_desc(char *label, struct dma_desc *desc, int tx) { u32 t; SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc); t = desc->buf1; SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t, t & DESC_ADDR_MASK, desc->buflen, (t & DESC_OWN) ? "SWITCH" : "CPU", (t & DESC_EOR) ? " RE" : ""); t = desc->buf2; SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2, t & DESC_ADDR_MASK, (t & DESC_BUF2_EN) ? " EN" : "" ); t = desc->misc; if (tx) SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t, (t & DESC_CSUM) ? " CSUM" : "", (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK, (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK, t & DESC_VLAN_MASK); else SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n", t, (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK, (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK, (t >> DESC_DA_SHIFT) & DESC_DA_MASK, (t & DESC_IPCSUM_FAIL) ? " IPCF" : "", (t & DESC_VLAN_TAG) ? " VLAN" : "", (t & DESC_TYPE_MASK)); } static void sw_dump_intr_mask(char *label, u32 mask) { SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", label, mask, (mask & SWITCH_INT_SHD) ? " SHD" : "", (mask & SWITCH_INT_SLD) ? " SLD" : "", (mask & SWITCH_INT_RHD) ? " RHD" : "", (mask & SWITCH_INT_RLD) ? " RLD" : "", (mask & SWITCH_INT_HDF) ? " HDF" : "", (mask & SWITCH_INT_LDF) ? " LDF" : "", (mask & SWITCH_INT_P0QF) ? " P0QF" : "", (mask & SWITCH_INT_P1QF) ? " P1QF" : "", (mask & SWITCH_INT_P2QF) ? " P2QF" : "", (mask & SWITCH_INT_P3QF) ? " P3QF" : "", (mask & SWITCH_INT_P4QF) ? " P4QF" : "", (mask & SWITCH_INT_CPQF) ? " CPQF" : "", (mask & SWITCH_INT_GQF) ? " GQF" : "", (mask & SWITCH_INT_MD) ? " MD" : "", (mask & SWITCH_INT_BCS) ? " BCS" : "", (mask & SWITCH_INT_PSC) ? " PSC" : "", (mask & SWITCH_INT_ID) ? " ID" : "", (mask & SWITCH_INT_W0TE) ? " W0TE" : "", (mask & SWITCH_INT_W1TE) ? " W1TE" : "", (mask & SWITCH_INT_RDE) ? " RDE" : "", (mask & SWITCH_INT_SDE) ? " SDE" : "", (mask & SWITCH_INT_CPUH) ? " CPUH" : ""); } /* ------------------------------------------------------------------------ */ static inline void adm5120_rx_dma_update(struct dma_desc *desc, struct sk_buff *skb, int end) { desc->misc = 0; desc->buf2 = 0; desc->buflen = RX_MAX_PKTLEN; desc->buf1 = DESC_ADDR(skb->data) | DESC_OWN | (end ? DESC_EOR : 0); } static int adm5120_switch_rx(struct net_device *dev, int *budget) { struct sk_buff *skb, *skbn; struct adm5120_sw *priv; struct net_device *cdev; struct dma_desc *desc; int len, quota; quota = min(dev->quota, *budget); SW_DBG("%s polling, quota=%d\n", dev->name, quota); sw_int_ack(SWITCH_INTS_POLL); desc = &rxl_descs[cur_rxl]; while (!(desc->buf1 & DESC_OWN) && quota) { u32 port = desc_get_srcport(desc); cdev = adm5120_port[port]; if (cdev != dev) { /* The current packet belongs to a different device */ if ((cdev==NULL) || !netif_running(cdev)) { /* discard (update with old skb) */ skb = skbn = NULL; goto rx_skip; } else { netif_rx_schedule(cdev);/* Start polling next device */ return 1; /* return 1 -> More packets to process */ } } skb = rxl_skbuff[cur_rxl]; len = desc_get_pktlen(desc); len -= ETH_CSUM_LEN; priv = netdev_priv(dev); if (len <= 0 || len > RX_MAX_PKTLEN || desc_ipcsum_fail(desc)) { dev->stats.rx_errors++; skbn = NULL; } else { skbn = dev_alloc_skb(SKB_ALLOC_LEN); if (skbn) { skb_put(skb, len); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); skb->ip_summed = CHECKSUM_UNNECESSARY; dev->last_rx = jiffies; dev->stats.rx_packets++; dev->stats.rx_bytes += len; skb_reserve(skbn, SKB_RESERVE_LEN); rxl_skbuff[cur_rxl] = skbn; } else { SW_INFO("%s recycling!\n", dev->name); } } rx_skip: adm5120_rx_dma_update(&rxl_descs[cur_rxl], rxl_skbuff[cur_rxl], (RX_RING_SIZE-1==cur_rxl)); if (RX_RING_SIZE == ++cur_rxl) cur_rxl = 0; desc = &rxl_descs[cur_rxl]; if (skbn){ netif_receive_skb(skb); dev->quota--; (*budget)--; quota--; } } /* while */ if (quota) { netif_rx_complete(dev); sw_int_enable(SWITCH_INTS_POLL); return 0; } /* If there are still packets to process, return 1 */ return 1; } static void adm5120_switch_tx(void) { unsigned int entry; /* find and cleanup dirty tx descriptors */ entry = dirty_txl % TX_RING_SIZE; while (dirty_txl != cur_txl) { struct dma_desc *desc = &txl_descs[entry]; struct sk_buff *skb = txl_skbuff[entry]; if (desc->buf1 & DESC_OWN) break; sw_dump_desc("tx done", desc, 1); if (netif_running(skb->dev)) { skb->dev->stats.tx_bytes += skb->len; skb->dev->stats.tx_packets++; } dev_kfree_skb_irq(skb); txl_skbuff[entry] = NULL; entry = (++dirty_txl) % TX_RING_SIZE; } if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) { /* wake up queue of all devices */ int i; for (i = 0; i < SWITCH_NUM_PORTS; i++) { if (!adm5120_devs[i]) continue; netif_wake_queue(adm5120_devs[i]); } } } static irqreturn_t adm5120_poll_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; u32 status; status = sw_read_reg(SWITCH_REG_INT_STATUS); status &= ~(sw_read_reg(SWITCH_REG_INT_MASK)); status &= SWITCH_INTS_POLL; if (!status) return IRQ_NONE; sw_int_disable(SWITCH_INTS_POLL); netif_rx_schedule(dev); SW_DBG("%s handling IRQ%d\n", dev->name, irq); return IRQ_HANDLED; } static irqreturn_t adm5120_switch_irq(int irq, void *dev_id) { irqreturn_t ret; u32 status; status = sw_read_reg(SWITCH_REG_INT_STATUS); status &= ~(sw_read_reg(SWITCH_REG_INT_MASK)); sw_dump_intr_mask("sw irq", status); status &= SWITCH_INTS_ALL & ~SWITCH_INTS_POLL; if (!status) return IRQ_NONE; sw_int_ack(status); if (status & SWITCH_INT_SLD) { spin_lock(&sw_lock); adm5120_switch_tx(); spin_unlock(&sw_lock); } return IRQ_HANDLED; } static void adm5120_set_vlan(char *matrix) { unsigned long val; int vlan_port, port; val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24); sw_write_reg(SWITCH_REG_VLAN_G1, val); val = matrix[4] + (matrix[5]<<8); sw_write_reg(SWITCH_REG_VLAN_G2, val); /* Now set/update the port vs. device lookup table */ for (port=0; portbuf1 & DESC_OWN) { /* We want to write a packet but the TX queue is still * occupied by the DMA. We are faster than the DMA... */ dev_kfree_skb(skb); dev->stats.tx_dropped++; return 0; } txl_skbuff[entry] = skb; data = (desc->buf1 & DESC_EOR); data |= DESC_ADDR(skb->data); desc->misc = ((skb->lenlen) << DESC_PKTLEN_SHIFT) | (0x1 << priv->port); desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len; /* lock switch irq */ spin_lock_irq(&sw_lock); desc->buf1 = data | DESC_OWN; sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL); cur_txl++; if (cur_txl == dirty_txl + TX_QUEUE_LEN) { /* FIXME: stop queue for all devices */ netif_stop_queue(dev); } dev->trans_start = jiffies; spin_unlock_irq(&sw_lock); return 0; } static void adm5120_tx_timeout(struct net_device *dev) { SW_INFO("TX timeout on %s\n",dev->name); } static void adm5120_set_multicast_list(struct net_device *dev) { struct adm5120_sw *priv = netdev_priv(dev); u32 ports; u32 t; ports = adm5120_eth_vlans[priv->port] & SWITCH_PORTS_NOCPU; t = sw_read_reg(SWITCH_REG_CPUP_CONF); if (dev->flags & IFF_PROMISC) /* enable unknown packets */ t &= ~(ports << CPUP_CONF_DUNP_SHIFT); else /* disable unknown packets */ t |= (ports << CPUP_CONF_DUNP_SHIFT); if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI || dev->mc_count) /* enable multicast packets */ t &= ~(ports << CPUP_CONF_DMCP_SHIFT); else /* disable multicast packets */ t |= (ports << CPUP_CONF_DMCP_SHIFT); /* If there is any port configured to be in promiscuous mode, then the */ /* Bridge Test Mode has to be activated. This will result in */ /* transporting also packets learned in another VLAN to be forwarded */ /* to the CPU. */ /* The difficult scenario is when we want to build a bridge on the CPU.*/ /* Assume we have port0 and the CPU port in VLAN0 and port1 and the */ /* CPU port in VLAN1. Now we build a bridge on the CPU between */ /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */ /* Now assume a packet with ethernet source address 99 enters port 0 */ /* It will be forwarded to the CPU because it is unknown. Then the */ /* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */ /* When now a packet with ethernet destination address 99 comes in at */ /* port 1 in VLAN1, then the switch has learned that this address is */ /* located at port 0 in VLAN0. Therefore the switch will drop */ /* this packet. In order to avoid this and to send the packet still */ /* to the CPU, the Bridge Test Mode has to be activated. */ /* Check if there is any vlan in promisc mode. */ if (t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT)) t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */ else t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */ sw_write_reg(SWITCH_REG_CPUP_CONF, t); } static void adm5120_write_mac(struct net_device *dev) { struct adm5120_sw *priv = netdev_priv(dev); unsigned char *mac = dev->dev_addr; u32 t; t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) | (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC4_SHIFT); sw_write_reg(SWITCH_REG_MAC_WT1, t); t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) | MAC_WT0_MAWC | MAC_WT0_WVE | (priv->port<<3); sw_write_reg(SWITCH_REG_MAC_WT0, t); while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD)); } static int adm5120_sw_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); adm5120_write_mac(dev); return 0; } static int adm5120_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { int err; struct adm5120_sw_info info; struct adm5120_sw *priv = netdev_priv(dev); switch(cmd) { case SIOCGADMINFO: info.magic = 0x5120; info.ports = adm5120_nrdevs; info.vlan = priv->port; err = copy_to_user(rq->ifr_data, &info, sizeof(info)); if (err) return -EFAULT; break; case SIOCSMATRIX: if (!capable(CAP_NET_ADMIN)) return -EPERM; err = copy_from_user(adm5120_eth_vlans, rq->ifr_data, sizeof(adm5120_eth_vlans)); if (err) return -EFAULT; adm5120_set_vlan(adm5120_eth_vlans); break; case SIOCGMATRIX: err = copy_to_user(rq->ifr_data, adm5120_eth_vlans, sizeof(adm5120_eth_vlans)); if (err) return -EFAULT; break; case SIOCGETBW: err = copy_to_user(rq->ifr_data, bw_matrix, sizeof(bw_matrix)); if (err) return -EFAULT; break; case SIOCSETBW: if (!capable(CAP_NET_ADMIN)) return -EPERM; err = copy_from_user(bw_matrix, rq->ifr_data, sizeof(bw_matrix)); if (err) return -EFAULT; adm5120_set_bw(bw_matrix); break; default: return -EOPNOTSUPP; } return 0; } static void adm5120_dma_tx_init(struct dma_desc *desc, struct sk_buff **skbl, int num) { memset(desc, 0, num * sizeof(*desc)); desc[num-1].buf1 |= DESC_EOR; memset(skbl, 0, sizeof(struct skb*)*num); } static void adm5120_dma_rx_init(struct dma_desc *desc, struct sk_buff **skbl, int num) { int i; memset(desc, 0, num * sizeof(*desc)); for (i=0; iname, dev); if (err) { SW_ERR("unable to get irq for %s\n", dev->name); goto out_int; } SET_MODULE_OWNER(dev); memset(netdev_priv(dev), 0, sizeof(struct adm5120_sw)); ((struct adm5120_sw*)netdev_priv(dev))->port = i; dev->base_addr = ADM5120_SWITCH_BASE; dev->irq = ADM5120_IRQ_SWITCH; dev->open = adm5120_switch_open; dev->hard_start_xmit = adm5120_sw_start_xmit; dev->stop = adm5120_switch_stop; dev->set_multicast_list = adm5120_set_multicast_list; dev->do_ioctl = adm5120_do_ioctl; dev->tx_timeout = adm5120_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->set_mac_address = adm5120_sw_set_mac_address; dev->poll = adm5120_switch_rx; dev->weight = 64; memcpy(dev->dev_addr, adm5120_eth_macs[i], 6); adm5120_write_mac(dev); if ((err = register_netdev(dev))) { free_irq(ADM5120_IRQ_SWITCH, dev); free_netdev(dev); goto out_int; } SW_INFO("%s created for switch port%d\n", dev->name, i); } /* setup vlan/port mapping after devs are filled up */ adm5120_set_vlan(adm5120_eth_vlans); /* enable CPU port */ t = sw_read_reg(SWITCH_REG_CPUP_CONF); t &= ~CPUP_CONF_DCPUP; sw_write_reg(SWITCH_REG_CPUP_CONF, t); return 0; out_int: /* Undo everything that did succeed */ for (; i; i--) { unregister_netdev(adm5120_devs[i-1]); free_netdev(adm5120_devs[i-1]); } free_irq(ADM5120_IRQ_SWITCH, NULL); out: SW_ERR("init failed\n"); return err; } static void __exit adm5120_sw_exit(void) { int i; for (i = 0; i < SWITCH_NUM_PORTS; i++) { struct net_device *dev = adm5120_devs[i]; unregister_netdev(dev); free_irq(ADM5120_IRQ_SWITCH, dev); free_netdev(dev); } free_irq(ADM5120_IRQ_SWITCH, &sw_dev); for (i = 0; i < RX_RING_SIZE; i++) { if (!rxh_skbuff[i]) break; kfree_skb(rxh_skbuff[i]); } for (i = 0; i < RX_RING_SIZE; i++) { if (!rxl_skbuff[i]) break; kfree_skb(rxl_skbuff[i]); } } module_init(adm5120_sw_init); module_exit(adm5120_sw_exit);