/* * Real Time Clock driver for WL-HDD * * Copyright (C) 2007 Andreas Engel * * Hacked together mostly by copying the relevant code parts from: * drivers/i2c/i2c-bcm5365.c * drivers/i2c/i2c-algo-bit.c * drivers/char/rtc.c * * Note 1: * This module uses the standard char device (10,135), while the Asus module * rtcdrv.o uses (12,0). So, both can coexist which might be handy during * development (but see the comment in rtc_open()). * * Note 2: * You might need to set the clock once after loading the driver the first * time because the driver switches the chip into 24h mode if it is running * in 12h mode. * * Usage: * For compatibility reasons with the original asus driver, the time can be * read and set via the /dev/rtc device entry. The only accepted data format * is "YYYY:MM:DD:W:HH:MM:SS\n". See OpenWrt wiki for a script which handles * this format. * * In addition, this driver supports the standard ioctl() calls for setting * and reading the hardware clock, so the ordinary hwclock utility can also * be used. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * TODO: * - add a /proc/driver/rtc interface? * - make the battery failure bit available through the /proc interface? * * $Id: rtc.c 7 2007-05-25 19:37:01Z ae $ */ #include <linux/module.h> #include <linux/kmod.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/miscdevice.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/rtc.h> #include <linux/delay.h> #include <linux/version.h> #include <asm/uaccess.h> #include <asm/system.h> #include "gpio.h" #define RTC_IS_OPEN 0x01 /* Means /dev/rtc is in use. */ /* Can be changed via a module parameter. */ static int rtc_debug = 0; static unsigned long rtc_status = 0; /* Bitmapped status byte. */ static spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED; /* These settings are platform dependents. */ unsigned int sda_index = 0; unsigned int scl_index = 0; #define I2C_READ_MASK 1 #define I2C_WRITE_MASK 0 #define I2C_ACK 1 #define I2C_NAK 0 #define RTC_EPOCH 1900 #define RTC_I2C_ADDRESS (0x32 << 1) #define RTC_24HOUR_MODE_MASK 0x20 #define RTC_PM_MASK 0x20 #define RTC_VDET_MASK 0x40 #define RTC_Y2K_MASK 0x80 /* * Delay in microseconds for generating the pulses on the I2C bus. We use * a rather conservative setting here. See datasheet of the RTC chip. */ #define ADAP_DELAY 50 /* Avoid spurious compiler warnings. */ #define UNUSED __attribute__((unused)) MODULE_AUTHOR("Andreas Engel"); MODULE_LICENSE("GPL"); /* Test stolen from switch-adm.c. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,52) module_param(rtc_debug, int, 0); #else MODULE_PARM(rtc_debug, "i"); #endif static inline void sdalo(void) { gpio_direction_output(sda_index, 1); udelay(ADAP_DELAY); } static inline void sdahi(void) { gpio_direction_input(sda_index); udelay(ADAP_DELAY); } static inline void scllo(void) { gpio_direction_output(scl_index, 1); udelay(ADAP_DELAY); } static inline int getscl(void) { return (gpio_get_value(scl_index)); } static inline int getsda(void) { return (gpio_get_value(sda_index)); } /* * We shouldn't simply set the SCL pin to high. Like SDA, the SCL line is * bidirectional too. According to the I2C spec, the slave is allowed to * pull down the SCL line to slow down the clock, so we need to check this. * Generally, we'd need a timeout here, but in our case, we just check the * line, assuming the RTC chip behaves well. */ static int sclhi(void) { gpio_direction_input(scl_index); udelay(ADAP_DELAY); if (!getscl()) { printk(KERN_ERR "SCL pin should be low\n"); return -ETIMEDOUT; } return 0; } static void i2c_start(void) { sdalo(); scllo(); } static void i2c_stop(void) { sdalo(); sclhi(); sdahi(); } static int i2c_outb(int c) { int i; int ack; /* assert: scl is low */ for (i = 7; i >= 0; i--) { if (c & ( 1 << i )) { sdahi(); } else { sdalo(); } if (sclhi() < 0) { /* timed out */ sdahi(); /* we don't want to block the net */ return -ETIMEDOUT; }; scllo(); } sdahi(); if (sclhi() < 0) { return -ETIMEDOUT; }; /* read ack: SDA should be pulled down by slave */ ack = getsda() == 0; /* ack: sda is pulled low ->success. */ scllo(); if (rtc_debug) printk(KERN_DEBUG "i2c_outb(0x%02x) -> %s\n", c, ack ? "ACK": "NAK"); return ack; /* return 1 if device acked */ /* assert: scl is low (sda undef) */ } static int i2c_inb(int ack) { int i; unsigned int indata = 0; /* assert: scl is low */ sdahi(); for (i = 0; i < 8; i++) { if (sclhi() < 0) { return -ETIMEDOUT; }; indata *= 2; if (getsda()) indata |= 0x01; scllo(); } if (ack) { sdalo(); } else { sdahi(); } if (sclhi() < 0) { sdahi(); return -ETIMEDOUT; } scllo(); sdahi(); if (rtc_debug) printk(KERN_DEBUG "i2c_inb() -> 0x%02x\n", indata); /* assert: scl is low */ return indata & 0xff; } static void i2c_init(void) { /* no gpio_control for EXTIF */ // gpio_control(sda_mask | scl_mask, 0); gpio_set_value(sda_index, 0); gpio_set_value(scl_index, 0); sdahi(); sclhi(); } static int rtc_open(UNUSED struct inode *inode, UNUSED struct file *filp) { spin_lock_irq(&rtc_lock); if (rtc_status & RTC_IS_OPEN) { spin_unlock_irq(&rtc_lock); return -EBUSY; } rtc_status |= RTC_IS_OPEN; /* * The following call is only necessary if we use both this driver and * the proprietary one from asus at the same time (which, b.t.w. only * makes sense during development). Otherwise, each access via the asus * driver will make access via this driver impossible. */ i2c_init(); spin_unlock_irq(&rtc_lock); return 0; } static int rtc_release(UNUSED struct inode *inode, UNUSED struct file *filp) { /* No need for locking here. */ rtc_status &= ~RTC_IS_OPEN; return 0; } static int from_bcd(int bcdnum) { int fac, num = 0; for (fac = 1; bcdnum; fac *= 10) { num += (bcdnum % 16) * fac; bcdnum /= 16; } return num; } static int to_bcd(int decnum) { int fac, num = 0; for (fac = 1; decnum; fac *= 16) { num += (decnum % 10) * fac; decnum /= 10; } return num; } static void get_rtc_time(struct rtc_time *rtc_tm) { int cr2; /* * Read date and time from the RTC. We use read method (3). */ i2c_start(); i2c_outb(RTC_I2C_ADDRESS | I2C_READ_MASK); cr2 = i2c_inb(I2C_ACK); rtc_tm->tm_sec = i2c_inb(I2C_ACK); rtc_tm->tm_min = i2c_inb(I2C_ACK); rtc_tm->tm_hour = i2c_inb(I2C_ACK); rtc_tm->tm_wday = i2c_inb(I2C_ACK); rtc_tm->tm_mday = i2c_inb(I2C_ACK); rtc_tm->tm_mon = i2c_inb(I2C_ACK); rtc_tm->tm_year = i2c_inb(I2C_NAK); i2c_stop(); if (cr2 & RTC_VDET_MASK) { printk(KERN_WARNING "***RTC BATTERY FAILURE***\n"); } /* Handle century bit */ if (rtc_tm->tm_mon & RTC_Y2K_MASK) { rtc_tm->tm_mon &= ~RTC_Y2K_MASK; rtc_tm->tm_year += 0x100; } rtc_tm->tm_sec = from_bcd(rtc_tm->tm_sec); rtc_tm->tm_min = from_bcd(rtc_tm->tm_min); rtc_tm->tm_hour = from_bcd(rtc_tm->tm_hour); rtc_tm->tm_mday = from_bcd(rtc_tm->tm_mday); rtc_tm->tm_mon = from_bcd(rtc_tm->tm_mon) - 1; rtc_tm->tm_year = from_bcd(rtc_tm->tm_year); rtc_tm->tm_isdst = -1; /* DST not known */ } static void set_rtc_time(struct rtc_time *rtc_tm) { rtc_tm->tm_sec = to_bcd(rtc_tm->tm_sec); rtc_tm->tm_min = to_bcd(rtc_tm->tm_min); rtc_tm->tm_hour = to_bcd(rtc_tm->tm_hour); rtc_tm->tm_mday = to_bcd(rtc_tm->tm_mday); rtc_tm->tm_mon = to_bcd(rtc_tm->tm_mon + 1); rtc_tm->tm_year = to_bcd(rtc_tm->tm_year); if (rtc_tm->tm_year >= 0x100) { rtc_tm->tm_year -= 0x100; rtc_tm->tm_mon |= RTC_Y2K_MASK; } i2c_start(); i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); i2c_outb(0x00); /* set starting register to 0 (=seconds) */ i2c_outb(rtc_tm->tm_sec); i2c_outb(rtc_tm->tm_min); i2c_outb(rtc_tm->tm_hour); i2c_outb(rtc_tm->tm_wday); i2c_outb(rtc_tm->tm_mday); i2c_outb(rtc_tm->tm_mon); i2c_outb(rtc_tm->tm_year); i2c_stop(); } static ssize_t rtc_write(UNUSED struct file *filp, const char *buf, size_t count, loff_t *ppos) { struct rtc_time rtc_tm; char buffer[23]; char *p; if (!capable(CAP_SYS_TIME)) return -EACCES; if (ppos != &filp->f_pos) return -ESPIPE; /* * For simplicity, the only acceptable format is: * YYYY:MM:DD:W:HH:MM:SS\n */ if (count != 22) goto err_out; if (copy_from_user(buffer, buf, count)) return -EFAULT; buffer[sizeof(buffer)-1] = '\0'; p = &buffer[0]; rtc_tm.tm_year = simple_strtoul(p, &p, 10); if (*p++ != ':') goto err_out; rtc_tm.tm_mon = simple_strtoul(p, &p, 10) - 1; if (*p++ != ':') goto err_out; rtc_tm.tm_mday = simple_strtoul(p, &p, 10); if (*p++ != ':') goto err_out; rtc_tm.tm_wday = simple_strtoul(p, &p, 10); if (*p++ != ':') goto err_out; rtc_tm.tm_hour = simple_strtoul(p, &p, 10); if (*p++ != ':') goto err_out; rtc_tm.tm_min = simple_strtoul(p, &p, 10); if (*p++ != ':') goto err_out; rtc_tm.tm_sec = simple_strtoul(p, &p, 10); if (*p != '\n') goto err_out; rtc_tm.tm_year -= RTC_EPOCH; set_rtc_time(&rtc_tm); *ppos += count; return count; err_out: printk(KERN_ERR "invalid format: use YYYY:MM:DD:W:HH:MM:SS\\n\n"); return -EINVAL; } static ssize_t rtc_read(UNUSED struct file *filp, char *buf, size_t count, loff_t *ppos) { char wbuf[23]; struct rtc_time tm; ssize_t len; if (count == 0 || *ppos != 0) return 0; get_rtc_time(&tm); len = sprintf(wbuf, "%04d:%02d:%02d:%d:%02d:%02d:%02d\n", tm.tm_year + RTC_EPOCH, tm.tm_mon + 1, tm.tm_mday, tm.tm_wday, tm.tm_hour, tm.tm_min, tm.tm_sec); if (len > (ssize_t)count) len = count; if (copy_to_user(buf, wbuf, len)) return -EFAULT; *ppos += len; return len; } static int rtc_ioctl(UNUSED struct inode *inode, UNUSED struct file *filp, unsigned int cmd, unsigned long arg) { struct rtc_time rtc_tm; switch (cmd) { case RTC_RD_TIME: memset(&rtc_tm, 0, sizeof(struct rtc_time)); get_rtc_time(&rtc_tm); if (copy_to_user((void *)arg, &rtc_tm, sizeof(rtc_tm))) return -EFAULT; break; case RTC_SET_TIME: if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&rtc_tm, (struct rtc_time *)arg, sizeof(struct rtc_time))) return -EFAULT; set_rtc_time(&rtc_tm); break; default: return -ENOTTY; } return 0; } static struct file_operations rtc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = rtc_read, .write = rtc_write, .ioctl = rtc_ioctl, .open = rtc_open, .release = rtc_release, }; static struct miscdevice rtc_dev = { .minor = RTC_MINOR, .name = "rtc", .fops = &rtc_fops, }; /* Savagely ripped from diag.c. */ extern char *nvram_get(char *str); #define getvar(str) (nvram_get(str)?:"") static inline int startswith (char *source, char *cmp) { return !strncmp(source,cmp,strlen(cmp)); } static void platform_detect(void) { char *buf; /* Based on "model_no". */ if ((buf = nvram_get("model_no"))) { if (startswith(buf,"WL700")) { /* WL700* */ sda_index = 2; scl_index = 5; return; } } if (startswith(getvar("hardware_version"), "WL300-")) { /* Either WL-300g or WL-HDD, do more extensive checks */ if ((simple_strtoul(getvar("et0phyaddr"), NULL, 0) == 0) && (simple_strtoul(getvar("et1phyaddr"), NULL, 0) == 1)) { sda_index = 4; scl_index = 5; return; } } /* not found */ } static int __init rtc_init(void) { int cr1; platform_detect(); if (sda_index == scl_index) { printk(KERN_ERR "RTC-RV5C386A: unrecognized platform!\n"); return -ENODEV; } i2c_init(); /* * Switch RTC to 24h mode */ i2c_start(); i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); i2c_outb(0xE4); /* start at address 0xE, transmission mode 4 */ cr1 = i2c_inb(I2C_NAK); i2c_stop(); if ((cr1 & RTC_24HOUR_MODE_MASK) == 0) { /* RTC is running in 12h mode */ printk(KERN_INFO "rtc.o: switching to 24h mode\n"); i2c_start(); i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK); i2c_outb(0xE0); i2c_outb(cr1 | RTC_24HOUR_MODE_MASK); i2c_stop(); } misc_register(&rtc_dev); printk(KERN_INFO "RV5C386A Real Time Clock Driver loaded\n"); return 0; } static void __exit rtc_exit (void) { misc_deregister(&rtc_dev); printk(KERN_INFO "Successfully removed RTC RV5C386A driver\n"); } module_init(rtc_init); module_exit(rtc_exit); /* * Local Variables: * indent-tabs-mode:t * c-basic-offset:8 * End: */