/* Copyright (C) 2004 - 2007 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt61pci Abstract: rt61pci device specific routines. Supported chipsets: RT2561, RT2561s, RT2661. */ /* * Set enviroment defines for rt2x00.h */ #define DRV_NAME "rt61pci" #include #include #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00lib.h" #include "rt2x00pci.h" #include "rt61pci.h" /* * Register access. * BBP and RF register require indirect register access, * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. */ static u32 rt61pci_bbp_check(const struct rt2x00_dev *rt2x00dev) { u32 reg; unsigned int i; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®); if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY)) break; udelay(REGISTER_BUSY_DELAY); } return reg; } static void rt61pci_bbp_write(const struct rt2x00_dev *rt2x00dev, const u8 reg_id, const u8 value) { u32 reg; /* * Wait until the BBP becomes ready. */ reg = rt61pci_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n"); return; } /* * Write the data into the BBP. */ reg = 0; rt2x00_set_field32(®, PHY_CSR3_VALUE, value); rt2x00_set_field32(®, PHY_CSR3_REGNUM, reg_id); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); } static void rt61pci_bbp_read(const struct rt2x00_dev *rt2x00dev, const u8 reg_id, u8 *value) { u32 reg; /* * Wait until the BBP becomes ready. */ reg = rt61pci_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); return; } /* * Write the request into the BBP. */ reg =0; rt2x00_set_field32(®, PHY_CSR3_REGNUM, reg_id); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); /* * Wait until the BBP becomes ready. */ reg = rt61pci_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); *value = 0xff; return; } *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); } static void rt61pci_rf_write(const struct rt2x00_dev *rt2x00dev, const u32 value) { u32 reg; unsigned int i; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®); if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY)) goto rf_write; udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n"); return; rf_write: reg = 0; rt2x00_set_field32(®, PHY_CSR4_VALUE, value); rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg); } static void rt61pci_mcu_request(const struct rt2x00_dev *rt2x00dev, const u8 command, const u8 token, const u8 arg0, const u8 arg1) { u32 reg; rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®); if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) { ERROR(rt2x00dev, "mcu request error. " "Request 0x%02x failed for token 0x%02x.\n", command, token); return; } rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®); rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg); } static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); } static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, !!eeprom->reg_chip_select); rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) ) static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data); } static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), *((u32*)data)); } static void rt61pci_read_eeprom(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt2x00_eeprom_read(rt2x00dev, word, data); } static void rt61pci_write_eeprom(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt2x00_eeprom_write(rt2x00dev, word, *((u16*)data)); } static void rt61pci_read_bbp(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt61pci_bbp_read(rt2x00dev, word, data); } static void rt61pci_write_bbp(struct rt2x00_dev *rt2x00dev, const unsigned long word, void *data) { rt61pci_bbp_write(rt2x00dev, word, *((u8*)data)); } static const struct rt2x00debug rt61pci_rt2x00debug = { .owner = THIS_MODULE, .reg_csr = { .read = rt61pci_read_csr, .write = rt61pci_write_csr, .word_size = sizeof(u32), .word_count = CSR_REG_SIZE / sizeof(u32), }, .reg_eeprom = { .read = rt61pci_read_eeprom, .write = rt61pci_write_eeprom, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .reg_bbp = { .read = rt61pci_read_bbp, .write = rt61pci_write_bbp, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ #ifdef CONFIG_RT61PCI_RFKILL static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); return rt2x00_get_field32(reg, MAC_CSR13_BIT5);; } #endif /* CONFIG_RT2400PCI_RFKILL */ /* * Configuration handlers. */ static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid) { u32 reg[2]; memset(®, 0, sizeof(reg)); memcpy(®, bssid, ETH_ALEN); rt2x00_set_field32(®[1], MAC_CSR5_BSS_ID_MASK, 3); /* * The BSSID is passed to us as an array of bytes, * that array is little endian, so no need for byte ordering. */ rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, ®, sizeof(reg)); } static void rt61pci_config_promisc(struct rt2x00_dev *rt2x00dev, const int promisc) { u32 reg; rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, !promisc); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); } static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type) { u32 reg; rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0); /* * Apply hardware packet filter. */ rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); if (!is_monitor_present(&rt2x00dev->interface) && (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA)) rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 1); else rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 1); if (is_monitor_present(&rt2x00dev->interface)) { rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 0); } else { rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); } rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_BORADCAST, 0); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); /* * Enable synchronisation. */ rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); if (is_interface_present(&rt2x00dev->interface)) { rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); } rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP) rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 2); else if (type == IEEE80211_IF_TYPE_STA) rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 1); else if (is_monitor_present(&rt2x00dev->interface) && !is_interface_present(&rt2x00dev->interface)) rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); } static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, const int value, const int channel, const int txpower) { u8 reg = 0; u32 rf1 = 0; u32 rf2 = value; u32 rf3 = 0; u32 rf4 = 0; if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags) || channel <= 14) rf1 = 0x00002ccc; else if (channel == 36 || (channel >= 100 && channel <= 116) || channel >= 157) rf1 = 0x00002cd4; else rf1 = 0x00002cd0; if (channel <= 14) { rf3 = 0x00068455; } else if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) { if (channel >= 36 && channel <= 48) rf3 = 0x0009be55; else if (channel >= 52 && channel <= 64) rf3 = 0x0009ae55; else if (channel >= 100 && channel <= 112) rf3 = 0x000bae55; else rf3 = 0x000bbe55; } else { switch (channel) { case 36: case 40: case 44: rf3 = 0x00098455; break; case 48: rf3 = 0x00098655; break; case 52: rf3 = 0x00098855; break; case 56: rf3 = 0x00098c55; case 60: rf3 = 0x00098e55; break; case 64: rf3 = 0x00099255; break; case 100: case 104: case 108: rf3 = 0x000b9855; break; case 112: case 116: case 120: case 124: rf3 = 0x000b9a55; break; case 128: case 132: rf3 = 0x000b9c55; break; case 136: case 140: rf3 = 0x000b9e55; break; case 149: case 153: case 157: case 161: case 165: rf3 = 0x000ba255; break; } } if (channel < 14) { if (channel & 1) rf4 = 0x000ffa0b; else rf4 = 0x000ffa1f; } else if (channel == 14) { rf4 = 0x000ffa13; } else if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) { switch (channel) { case 36: case 56: case 116: case 136: rf4 = 0x000ffa23; break; case 40: case 60: case 100: case 120: case 140: rf4 = 0x000ffa03; break; case 44: case 64: case 104: case 124: rf4 = 0x000ffa0b; break; case 48: case 108: case 128: rf4 = 0x000ffa13; break; case 52: case 112: case 132: rf4 = 0x000ffa1b; break; case 149: rf4 = 0x000ffa1f; break; case 153: rf4 = 0x000ffa27; break; case 157: rf4 = 0x000ffa07; break; case 161: rf4 = 0x000ffa0f; break; case 165: rf4 = 0x000ffa17; break; } } else { switch (channel) { case 36: case 40: case 60: case 140: case 100: case 104: case 108: case 112: case 116: case 120: rf4 = 0x000c0a03; break; case 44: case 64: case 124: case 149: rf4 = 0x000c0a1b; break; case 48: case 128: case 153: rf4 = 0x000c0a0b; break; case 52: case 132: rf4 = 0x000c0a23; break; case 56: case 136: rf4 = 0x000c0a13; break; case 157: case 161: case 165: rf4 = 0x000c0a17; break; } } /* * Set TXpower. */ rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); /* * Set Frequency offset. */ rt2x00_set_field32(&rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); rt61pci_rf_write(rt2x00dev, rf1); rt61pci_rf_write(rt2x00dev, rf2); rt61pci_rf_write(rt2x00dev, rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, rf4); udelay(200); rt61pci_rf_write(rt2x00dev, rf1); rt61pci_rf_write(rt2x00dev, rf2); rt61pci_rf_write(rt2x00dev, rf3 | 0x00000004); rt61pci_rf_write(rt2x00dev, rf4); udelay(200); rt61pci_rf_write(rt2x00dev, rf1); rt61pci_rf_write(rt2x00dev, rf2); rt61pci_rf_write(rt2x00dev, rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, rf4); rt61pci_bbp_read(rt2x00dev, 3, ®); if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF2527)) reg &= ~0x01; else reg |= 0x01; rt61pci_bbp_write(rt2x00dev, 3, reg); msleep(1); /* * Update rf fields */ rt2x00dev->rf1 = rf1; rt2x00dev->rf2 = rf2; rt2x00dev->rf3 = rf3; rt2x00dev->rf4 = rf4; rt2x00dev->tx_power = txpower; } static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { rt2x00_set_field32(&rt2x00dev->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf1); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf2); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf4); udelay(200); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf1); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf2); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf3 | 0x00000004); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf4); udelay(200); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf1); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf2); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, rt2x00dev->rf4); } static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev, const int antenna_tx, const int antenna_rx) { u32 reg; u8 r3; u8 r4; u8 r77; rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®); if (rt2x00dev->curr_hwmode == HWMODE_A) { if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { rt61pci_bbp_write(rt2x00dev, 17, 0x38); rt61pci_bbp_write(rt2x00dev, 96, 0x78); rt61pci_bbp_write(rt2x00dev, 104, 0x48); rt61pci_bbp_write(rt2x00dev, 75, 0x80); rt61pci_bbp_write(rt2x00dev, 86, 0x80); rt61pci_bbp_write(rt2x00dev, 88, 0x80); } else { rt61pci_bbp_write(rt2x00dev, 17, 0x28); rt61pci_bbp_write(rt2x00dev, 96, 0x58); rt61pci_bbp_write(rt2x00dev, 104, 0x38); rt61pci_bbp_write(rt2x00dev, 75, 0xfe); rt61pci_bbp_write(rt2x00dev, 86, 0xfe); rt61pci_bbp_write(rt2x00dev, 88, 0xfe); } rt61pci_bbp_write(rt2x00dev, 35, 0x60); rt61pci_bbp_write(rt2x00dev, 97, 0x58); rt61pci_bbp_write(rt2x00dev, 98, 0x58); rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 0); rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 1); } else { if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { rt61pci_bbp_write(rt2x00dev, 17, 0x30); rt61pci_bbp_write(rt2x00dev, 96, 0x68); rt61pci_bbp_write(rt2x00dev, 104, 0x3c); rt61pci_bbp_write(rt2x00dev, 75, 0x80); rt61pci_bbp_write(rt2x00dev, 86, 0x80); rt61pci_bbp_write(rt2x00dev, 88, 0x80); } else { rt61pci_bbp_write(rt2x00dev, 17, 0x20); rt61pci_bbp_write(rt2x00dev, 96, 0x48); rt61pci_bbp_write(rt2x00dev, 104, 0x2c); rt61pci_bbp_write(rt2x00dev, 75, 0xfe); rt61pci_bbp_write(rt2x00dev, 86, 0xfe); rt61pci_bbp_write(rt2x00dev, 88, 0xfe); } rt61pci_bbp_write(rt2x00dev, 35, 0x50); rt61pci_bbp_write(rt2x00dev, 97, 0x48); rt61pci_bbp_write(rt2x00dev, 98, 0x48); rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 1); rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 0); } rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg); rt61pci_bbp_read(rt2x00dev, 3, &r3); rt61pci_bbp_read(rt2x00dev, 4, &r4); rt61pci_bbp_read(rt2x00dev, 77, &r77); if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF2527)) rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF5325)) { if (antenna_rx == ANTENNA_DIVERSITY) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2); if (rt2x00dev->curr_hwmode != HWMODE_A) rt2x00_set_field8(&r4, BBP_R4_RX_BG_MODE, 1); } else if (antenna_rx == ANTENNA_A) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); if (rt2x00dev->curr_hwmode == HWMODE_A) rt2x00_set_field8(&r77, BBP_R77_PAIR, 0); else rt2x00_set_field8(&r77, BBP_R77_PAIR, 3); rt61pci_bbp_write(rt2x00dev, 77, r77); } else if (antenna_rx == ANTENNA_B) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); if (rt2x00dev->curr_hwmode == HWMODE_A) rt2x00_set_field8(&r77, BBP_R77_PAIR, 3); else rt2x00_set_field8(&r77, BBP_R77_PAIR, 0); rt61pci_bbp_write(rt2x00dev, 77, r77); } } else if (rt2x00_rf(&rt2x00dev->chip, RF2527) || (rt2x00_rf(&rt2x00dev->chip, RF2529) && test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))) { if (antenna_rx == ANTENNA_DIVERSITY) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2); rt2x00_set_field8(&r4, BBP_R4_RX_BG_MODE, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); } else if (antenna_rx == ANTENNA_A) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); rt2x00_set_field8(&r4, BBP_R4_RX_BG_MODE, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); rt2x00_set_field8(&r77, BBP_R77_PAIR, 3); rt61pci_bbp_write(rt2x00dev, 77, r77); } else if (antenna_rx == ANTENNA_B) { rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); rt2x00_set_field8(&r4, BBP_R4_RX_BG_MODE, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); rt2x00_set_field8(&r77, BBP_R77_PAIR, 0); rt61pci_bbp_write(rt2x00dev, 77, r77); } } /* * TODO: RF2529 with another antenna value then 2 are ignored. * The legacy driver is unclear whether in those cases there is * a possibility to switch antenna. */ rt61pci_bbp_write(rt2x00dev, 3, r3); rt61pci_bbp_write(rt2x00dev, 4, r4); } static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev, const int short_slot_time, const int beacon_int) { u32 reg; rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME); rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®); rt2x00_set_field32(®, MAC_CSR8_SIFS, SIFS); rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); rt2x00_set_field32(®, MAC_CSR8_EIFS, EIFS); rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg); rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, beacon_int * 16); rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); } static void rt61pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate) { struct ieee80211_conf *conf = &rt2x00dev->hw->conf; u32 reg; u32 value; u32 preamble; preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? SHORT_PREAMBLE : PREAMBLE; /* * Extract the allowed ratemask from the device specific rate value, * We need to set TXRX_CSR5 to the basic rate mask so we need to mask * off the non-basic rates. */ reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATE; rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, reg); rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ? SHORT_DIFS : DIFS) + PLCP + preamble + get_duration(ACK_SIZE, 10); rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, value); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); if (preamble == SHORT_PREAMBLE) rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 1); else rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 0); rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); } static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev, const int phymode) { struct ieee80211_hw_mode *mode; struct ieee80211_rate *rate; if (phymode == MODE_IEEE80211A) rt2x00dev->curr_hwmode = HWMODE_A; else if (phymode == MODE_IEEE80211B) rt2x00dev->curr_hwmode = HWMODE_B; else rt2x00dev->curr_hwmode = HWMODE_G; mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; rate = &mode->rates[mode->num_rates - 1]; rt61pci_config_rate(rt2x00dev, rate->val2); } static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr) { u32 reg[2]; memset(®, 0, sizeof(reg)); memcpy(®, addr, ETH_ALEN); rt2x00_set_field32(®[1], MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); /* * The MAC address is passed to us as an array of bytes, * that array is little endian, so no need for byte ordering. */ rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, ®, sizeof(reg)); } /* * LED functions. */ static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 led_reg; u8 arg0; u8 arg1; rt2x00pci_register_read(rt2x00dev, MAC_CSR14, ®); rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, 70); rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, 30); rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg); led_reg = rt2x00dev->led_reg; rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 1); if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 1); else rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 1); arg0 = led_reg & 0xff; arg1 = (led_reg >> 8) & 0xff; rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1); } static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev) { u16 led_reg; u8 arg0; u8 arg1; led_reg = rt2x00dev->led_reg; rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0); rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0); rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0); arg0 = led_reg & 0xff; arg1 = (led_reg >> 8) & 0xff; rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1); } static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi) { u8 led; if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH) return; /* * Led handling requires a positive value for the rssi, * to do that correctly we need to add the correction. */ rssi += rt2x00dev->rssi_offset; if (rssi <= 30) led = 0; else if (rssi <= 39) led = 1; else if (rssi <= 49) led = 2; else if (rssi <= 53) led = 3; else if (rssi <= 63) led = 4; else led = 5; rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0); } /* * Link tuning */ static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev) { int rssi = rt2x00_get_link_rssi(&rt2x00dev->link); u32 reg; u8 r17; u8 up_bound; u8 low_bound; /* * Update Led strength */ rt61pci_activity_led(rt2x00dev, rssi); rt61pci_bbp_read(rt2x00dev, 17, &r17); /* * Determine r17 bounds. */ if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) { low_bound = 0x28; up_bound = 0x48; if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { low_bound += 0x10; up_bound += 0x10; } } else { low_bound = 0x20; up_bound = 0x40; if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { low_bound += 0x10; up_bound += 0x10; } } /* * Special big-R17 for very short distance */ if (rssi >= -35) { if (r17 != 0x60) rt61pci_bbp_write(rt2x00dev, 17, 0x60); return; } /* * Special big-R17 for short distance */ if (rssi >= -58) { if (r17 != up_bound) rt61pci_bbp_write(rt2x00dev, 17, up_bound); return; } /* * Special big-R17 for middle-short distance */ if (rssi >= -66) { low_bound += 0x10; if (r17 != low_bound) rt61pci_bbp_write(rt2x00dev, 17, low_bound); return; } /* * Special mid-R17 for middle distance */ if (rssi >= -74) { low_bound += 0x08; if (r17 != low_bound) rt61pci_bbp_write(rt2x00dev, 17, low_bound); return; } /* * Special case: Change up_bound based on the rssi. * Lower up_bound when rssi is weaker then -74 dBm. */ up_bound -= 2 * (-74 - rssi); if (low_bound > up_bound) up_bound = low_bound; if (r17 > up_bound) { rt61pci_bbp_write(rt2x00dev, 17, up_bound); return; } /* * r17 does not yet exceed upper limit, continue and base * the r17 tuning on the false CCA count. */ rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); rt2x00dev->link.false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) { if (++r17 > up_bound) r17 = up_bound; rt61pci_bbp_write(rt2x00dev, 17, r17); rt2x00dev->rx_status.noise = r17; } else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) { if (--r17 < low_bound) r17 = low_bound; rt61pci_bbp_write(rt2x00dev, 17, r17); rt2x00dev->rx_status.noise = r17; } } /* * Firmware name function. */ static char *rt61pci_get_fw_name(struct rt2x00_dev *rt2x00dev) { char *fw_name; switch (rt2x00dev->chip.rt) { case RT2561: fw_name = FIRMWARE_RT2561; break; case RT2561s: fw_name = FIRMWARE_RT2561s; break; case RT2661: fw_name = FIRMWARE_RT2661; break; default: fw_name = NULL; break; } return fw_name; } /* * Initialization functions. */ static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data, const size_t len) { int i; u32 reg; /* * Wait for stable hardware. */ for (i = 0; i < 100; i++) { rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); if (reg) break; msleep(1); } if (!reg) { ERROR(rt2x00dev, "Unstable hardware.\n"); return -EBUSY; } /* * Prepare MCU and mailbox for firmware loading. */ reg = 0; rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0); /* * Write firmware to device. */ reg = 0; rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00pci_register_multiwrite( rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); for (i = 0; i < 100; i++) { rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®); if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) break; msleep(1); } if (i == 100) { ERROR(rt2x00dev, "MCU Control register not ready.\n"); return -EBUSY; } /* * Reset MAC and BBP registers. */ reg = 0; rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev) { struct data_desc *rxd; unsigned int i; u32 word; memset(rt2x00dev->rx->data_addr, 0x00, rt2x00_get_ring_size(rt2x00dev->rx)); for (i = 0; i < rt2x00dev->rx->stats.limit; i++) { rxd = rt2x00dev->rx->entry[i].priv; rt2x00_desc_read(rxd, 5, &word); rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, rt2x00dev->rx->entry[i].data_dma); rt2x00_desc_write(rxd, 5, word); rt2x00_desc_read(rxd, 0, &word); rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); rt2x00_desc_write(rxd, 0, word); } rt2x00_ring_index_clear(rt2x00dev->rx); } static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue) { struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue); struct data_desc *txd; unsigned int i; u32 word; memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring)); for (i = 0; i < ring->stats.limit; i++) { txd = ring->entry[i].priv; rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 5, &word); rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue); rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i); rt2x00_desc_write(txd, 5, word); rt2x00_desc_read(txd, 6, &word); rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, ring->entry[i].data_dma); rt2x00_desc_write(txd, 6, word); rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_VALID, 0); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); rt2x00_desc_write(txd, 0, word); } rt2x00_ring_index_clear(ring); } static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Initialize rings. */ rt61pci_init_rxring(rt2x00dev); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4); rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); /* * Initialize registers. */ rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®); rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit); rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit); rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit); rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit); rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg); rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®); rt2x00_set_field32(®, TX_RING_CSR1_MGMT_RING_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit); rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size / 4); rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg); rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®); rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma); rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg); rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®); rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma); rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg); rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®); rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma); rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg); rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®); rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma); rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg); rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, ®); rt2x00_set_field32(®, MGMT_BASE_CSR_RING_REGISTER, rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma); rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg); rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®); rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->stats.limit); rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, rt2x00dev->rx->desc_size / 4); rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg); rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®); rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, rt2x00dev->rx->data_dma); rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg); rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, 0x000000aa); rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, 0x0000001f); rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, 0x00000002); return 0; } static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00000718); rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 1); rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, 0x9eb39eb3); rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, 0x8a8b8c8d); rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, 0x00858687); rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, 0x2e31353b); rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, 0x2a2a2a2c); rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000); rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000); rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000); rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®); rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0); rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0); rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg); rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®); rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192); rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48); rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606); rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); /* * We must clear the error counters. * These registers are cleared on read, * so we may pass a useless variable to store the value. */ rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®); /* * Reset MAC and BBP registers. */ reg = 0; rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 reg_id; u8 value; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt61pci_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) goto continue_csr_init; NOTICE(rt2x00dev, "Waiting for BBP register.\n"); udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); return -EACCES; continue_csr_init: rt61pci_bbp_write(rt2x00dev, 3, 0x00); rt61pci_bbp_write(rt2x00dev, 15, 0x30); rt61pci_bbp_write(rt2x00dev, 17, 0x20); rt61pci_bbp_write(rt2x00dev, 21, 0xc8); rt61pci_bbp_write(rt2x00dev, 22, 0x38); rt61pci_bbp_write(rt2x00dev, 23, 0x06); rt61pci_bbp_write(rt2x00dev, 24, 0xfe); rt61pci_bbp_write(rt2x00dev, 25, 0x0a); rt61pci_bbp_write(rt2x00dev, 26, 0x0d); rt61pci_bbp_write(rt2x00dev, 34, 0x12); rt61pci_bbp_write(rt2x00dev, 37, 0x07); rt61pci_bbp_write(rt2x00dev, 39, 0xf8); rt61pci_bbp_write(rt2x00dev, 41, 0x60); rt61pci_bbp_write(rt2x00dev, 53, 0x10); rt61pci_bbp_write(rt2x00dev, 54, 0x18); rt61pci_bbp_write(rt2x00dev, 60, 0x10); rt61pci_bbp_write(rt2x00dev, 61, 0x04); rt61pci_bbp_write(rt2x00dev, 62, 0x04); rt61pci_bbp_write(rt2x00dev, 75, 0xfe); rt61pci_bbp_write(rt2x00dev, 86, 0xfe); rt61pci_bbp_write(rt2x00dev, 88, 0xfe); rt61pci_bbp_write(rt2x00dev, 90, 0x0f); rt61pci_bbp_write(rt2x00dev, 99, 0x00); rt61pci_bbp_write(rt2x00dev, 102, 0x16); rt61pci_bbp_write(rt2x00dev, 107, 0x04); DEBUG(rt2x00dev, "Start initialization from EEPROM...\n"); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n", reg_id, value); rt61pci_bbp_write(rt2x00dev, reg_id, value); } } DEBUG(rt2x00dev, "...End initialization from EEPROM.\n"); return 0; } /* * Device state switch handlers. */ static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, state == STATE_RADIO_RX_OFF); rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); } static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, int enabled) { u32 reg; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (enabled) { rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); } /* * Only toggle the interrupts bits we are going to use. * Non-checked interrupt bits are disabled by default. */ rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, !enabled); rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, !enabled); rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, !enabled); rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, !enabled); rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, !enabled); rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, !enabled); rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); } static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) { /* * Initialize all registers. */ if (rt61pci_init_rings(rt2x00dev) || rt61pci_init_registers(rt2x00dev) || rt61pci_init_bbp(rt2x00dev)) { ERROR(rt2x00dev, "Register initialization failed.\n"); return -EIO; } /* * Enable interrupts. */ rt61pci_toggle_irq(rt2x00dev, 1); /* * Enable RX. */ rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, 0x00000001); /* * Enable LED */ rt61pci_enable_led(rt2x00dev); return 0; } static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Disable LED */ rt61pci_disable_led(rt2x00dev); rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818); /* * Disable synchronisation. */ rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0); /* * Cancel RX and TX. */ rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_MGMT, 1); rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); /* * Disable interrupts. */ rt61pci_toggle_irq(rt2x00dev, 0); } static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; unsigned int i; char put_to_sleep; char current_state; put_to_sleep = (state != STATE_AWAKE); rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg); if (put_to_sleep) { rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005); rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0x00, 0x00); } else { rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0x00, 0x00); } /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); current_state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE); if (current_state == !put_to_sleep) return 0; msleep(10); } NOTICE(rt2x00dev, "Device failed to enter state %d, " "current device state %d.\n", !put_to_sleep, current_state); return -EBUSY; } static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt61pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt61pci_disable_radio(rt2x00dev); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_OFF: rt61pci_toggle_rx(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt61pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } return retval; } /* * TX descriptor initialization */ static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct data_entry *entry, struct data_desc *txd, struct data_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr, unsigned int length, struct ieee80211_tx_control *control) { u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue); rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->ring->tx_params.aifs); rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->ring->tx_params.cw_min); rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->ring->tx_params.cw_max); rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER); rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal); rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 5, &word); rt2x00_set_field32(&word, TXD_W5_TX_POWER, TXPOWER_TO_DEV(control->power_level)); rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); rt2x00_desc_write(txd, 5, word); rt2x00_desc_read(txd, 11, &word); rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length); rt2x00_desc_write(txd, 11, word); rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); rt2x00_set_field32(&word, TXD_W0_VALID, 1); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &entry->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_REQ_ACK, &entry->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags)); rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs); rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 0); rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length); rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); rt2x00_desc_write(txd, 0, word); } /* * TX data initialization */ static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, int queue) { u32 reg; if (queue == IEEE80211_TX_QUEUE_BEACON) { rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) { rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); } return; } rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); if (queue == IEEE80211_TX_QUEUE_DATA0) rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); else if (queue == IEEE80211_TX_QUEUE_DATA1) rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); else if (queue == IEEE80211_TX_QUEUE_DATA2) rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); else if (queue == IEEE80211_TX_QUEUE_DATA3) rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); else if (queue == IEEE80211_TX_QUEUE_DATA4) rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_MGMT, 1); rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); } /* * RX control handlers */ static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) { u16 eeprom; char offset; char lna; lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); switch (lna) { case 3: offset = 90; break; case 2: offset = 74; break; case 1: offset = 64; break; default: return 0; } if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) { if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) offset += 14; if (lna == 3 || lna == 2) offset += 10; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); } else { if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) offset += 14; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); } return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; } static int rt61pci_fill_rxdone(struct data_entry *entry, int *signal, int *rssi, int *ofdm) { struct data_desc *rxd = entry->priv; u32 word0; u32 word1; rt2x00_desc_read(rxd, 0, &word0); rt2x00_desc_read(rxd, 1, &word1); /* * TODO: Don't we need to keep statistics * updated about these errors? */ if (rt2x00_get_field32(word0, RXD_W0_CRC) || rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) return -EINVAL; /* * Obtain the status about this packet. */ *signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); *rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1); *ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM); return rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); } /* * Interrupt functions. */ static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; struct data_entry *entry; struct data_desc *txd; u32 word; u32 reg; int index; int tx_status; int retry; while (1) { rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®); if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) break; /* * Skip this entry when it contains an invalid * ring identication number. */ ring = rt2x00_get_ring(rt2x00dev, rt2x00_get_field32(reg, STA_CSR4_PID_TYPE)); if (unlikely(!ring)) continue; /* * Skip this entry when it contains an invalid * index number. */ index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); if (unlikely(index >= ring->stats.limit)) continue; entry = &ring->entry[index]; txd = entry->priv; rt2x00_desc_read(txd, 0, &word); if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || !rt2x00_get_field32(word, TXD_W0_VALID)) return; /* * Obtain the status about this packet. */ tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT); retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); rt2x00lib_txdone(entry, tx_status, retry); /* * Make this entry available for reuse. */ entry->flags = 0; rt2x00_set_field32(&word, TXD_W0_VALID, 0); rt2x00_desc_write(txd, 0, word); rt2x00_ring_index_done_inc(entry->ring); /* * If the data ring was full before the txdone handler * we must make sure the packet queue in the mac80211 stack * is reenabled when the txdone handler has finished. */ if (!rt2x00_ring_full(ring)) ieee80211_wake_queue(rt2x00dev->hw, entry->tx_status.control.queue); } } static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg; /* * Get the interrupt sources & saved to local variable. * Write register value back to clear pending interrupts. */ rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Handle interrupts, walk through all bits * and run the tasks, the bits are checked in order of * priority. */ /* * 1 - Beacon timer expired interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) rt2x00pci_beacondone(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); /* * 2 - Rx ring done interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) rt2x00pci_rxdone(rt2x00dev); /* * 3 - Tx ring done interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) rt61pci_txdone(rt2x00dev); return IRQ_HANDLED; } /* * Device initialization functions. */ static int rt61pci_alloc_eeprom(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; u16 word; u8 *mac; char value; /* * Allocate the eeprom memory, check the eeprom width * and copy the entire eeprom into this allocated memory. */ rt2x00dev->eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL); if (!rt2x00dev->eeprom) return -ENOMEM; rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt61pci_eepromregister_read; eeprom.register_write = rt61pci_eepromregister_write; eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: " MAC_FMT "\n", MAC_ARG(mac)); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, LED_MODE_DEFAULT); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); EEPROM(rt2x00dev, "Led: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); } return 0; } static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; u16 device; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. * To determine the RT chip we have to read the * PCI header of the device. */ pci_read_config_word(rt2x00dev_pci(rt2x00dev), PCI_CONFIG_HEADER_DEVICE, &device); value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, device, value, reg); if (!rt2x00_rf(&rt2x00dev->chip, RF5225) && !rt2x00_rf(&rt2x00dev->chip, RF5325) && !rt2x00_rf(&rt2x00dev->chip, RF2527) && !rt2x00_rf(&rt2x00dev->chip, RF2529)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->hw->conf.antenna_sel_tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->hw->conf.antenna_sel_rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * Read the Frame type. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags); /* * Determine number of antenna's. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags); /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags); /* * Read frequency offset and RF programming sequence. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); /* * Store led settings, for correct led behaviour. * If the eeprom value is invalid, * switch to default led mode. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE, rt2x00dev->led_mode); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_0)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_1)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_2)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_3)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_4)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_G)); rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_A)); return 0; } /* * RF value list for RF5225, RF5325, RF2527 & RF2529 * Supports: 2.4 GHz */ static const u32 rf_vals_bg[] = { 0x00004786, 0x00004786, 0x0000478a, 0x0000478a, 0x0000478e, 0x0000478e, 0x00004792, 0x00004792, 0x00004796, 0x00004796, 0x0000479a, 0x0000479a, 0x0000479e, 0x000047a2 }; /* * RF value list for RF5225 & RF5325 (supplement to vals_bg) * Supports: 5.2 GHz, rf_sequence disabled */ static const u32 rf_vals_a_5x_noseq[] = { 0x0000499a, 0x000049a2, 0x000049a6, 0x000049aa, 0x000049ae, 0x000049b2, 0x000049ba, 0x000049be, 0x00004a2a, 0x00004a2e, 0x00004a32, 0x00004a36, 0x00004a3a, 0x00004a82, 0x00004a86, 0x00004a8a, 0x00004a8e, 0x00004a92, 0x00004a9a, 0x00004aa2, 0x00004aa6, 0x00004aae, 0x00004ab2, 0x00004ab6 }; /* * RF value list for RF5225 & RF5325 (supplement to vals_bg) * Supports: 5.2 GHz, rf_sequence enabled */ static const u32 rf_vals_a_5x_seq[] = { 0x0004481a, 0x00044682, 0x00044686, 0x0004468e, 0x00044692, 0x0004469a, 0x000446a2, 0x000446a6, 0x0004489a, 0x000448a2, 0x000448aa, 0x000448b2, 0x000448ba, 0x00044702, 0x00044706, 0x0004470e, 0x00044712, 0x0004471a, 0x00044722, 0x0004472e, 0x00044736, 0x0004490a, 0x00044912, 0x0004491a }; static void rt61pci_init_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; u8 *txpower; unsigned int i; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_WEP_INCLUDE_IV | IEEE80211_HW_DATA_NULLFUNC_ACK | IEEE80211_HW_NO_TKIP_WMM_HWACCEL | IEEE80211_HW_MONITOR_DURING_OPER | IEEE80211_HW_NO_PROBE_FILTERING; rt2x00dev->hw->extra_tx_headroom = 0; rt2x00dev->hw->max_rssi = MAX_RX_SSI; rt2x00dev->hw->max_noise = MAX_RX_NOISE; rt2x00dev->hw->queues = 5; SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * Convert tx_power array in eeprom. */ txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); for (i = 0; i < 14; i++) txpower[i] = TXPOWER_FROM_DEV(txpower[i]); /* * Initialize hw_mode information. */ spec->num_modes = 2; spec->num_rates = 12; spec->num_channels = 14; spec->tx_power_a = NULL; spec->tx_power_bg = txpower; spec->tx_power_default = DEFAULT_TXPOWER; spec->chan_val_a = NULL; spec->chan_val_bg = rf_vals_bg; if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF5325)) { spec->num_modes = 3; spec->num_channels += 24; txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); for (i = 0; i < 14; i++) txpower[i] = TXPOWER_FROM_DEV(txpower[i]); spec->tx_power_a = txpower; if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) spec->chan_val_a = rf_vals_a_5x_noseq; else spec->chan_val_a = rf_vals_a_5x_seq; } } static int rt61pci_init_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt61pci_alloc_eeprom(rt2x00dev); if (retval) return retval; retval = rt61pci_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ rt61pci_init_hw_mode(rt2x00dev); /* * This device requires firmware */ __set_bit(FIRMWARE_REQUIRED, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } /* * IEEE80211 stack callback functions. */ static int rt61pci_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct rt2x00_dev *rt2x00dev = hw->priv; u32 reg; /* * Update FCS error count from register. * The dot11ACKFailureCount, dot11RTSFailureCount and * dot11RTSSuccessCount are updated in interrupt time. */ rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); rt2x00dev->low_level_stats.dot11FCSErrorCount += rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats)); return 0; } static int rt61pci_set_retry_limit(struct ieee80211_hw *hw, u32 short_retry, u32 long_retry) { struct rt2x00_dev *rt2x00dev = hw->priv; u32 reg; rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry); rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry); rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); return 0; } static u64 rt61pci_get_tsf(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; u64 tsf; u32 reg; rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®); tsf = (u64)rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®); tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); return tsf; } static void rt61pci_reset_tsf(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0); rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0); } static const struct ieee80211_ops rt61pci_mac80211_ops = { .tx = rt2x00lib_tx, .reset = rt2x00lib_reset, .add_interface = rt2x00lib_add_interface, .remove_interface = rt2x00lib_remove_interface, .config = rt2x00lib_config, .config_interface = rt2x00lib_config_interface, .set_multicast_list = rt2x00lib_set_multicast_list, .get_stats = rt61pci_get_stats, .set_retry_limit = rt61pci_set_retry_limit, .conf_tx = rt2x00lib_conf_tx, .get_tx_stats = rt2x00lib_get_tx_stats, .get_tsf = rt61pci_get_tsf, .reset_tsf = rt61pci_reset_tsf, .beacon_update = rt2x00pci_beacon_update, }; static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { .irq_handler = rt61pci_interrupt, .init_hw = rt61pci_init_hw, .get_fw_name = rt61pci_get_fw_name, .load_firmware = rt61pci_load_firmware, .initialize = rt2x00pci_initialize, .uninitialize = rt2x00pci_uninitialize, .set_device_state = rt61pci_set_device_state, #ifdef CONFIG_RT61PCI_RFKILL .rfkill_poll = rt61pci_rfkill_poll, #endif /* CONFIG_RT61PCI_RFKILL */ .link_tuner = rt61pci_link_tuner, .write_tx_desc = rt61pci_write_tx_desc, .write_tx_data = rt2x00pci_write_tx_data, .kick_tx_queue = rt61pci_kick_tx_queue, .fill_rxdone = rt61pci_fill_rxdone, .config_type = rt61pci_config_type, .config_phymode = rt61pci_config_phymode, .config_channel = rt61pci_config_channel, .config_mac_addr = rt61pci_config_mac_addr, .config_bssid = rt61pci_config_bssid, .config_promisc = rt61pci_config_promisc, .config_txpower = rt61pci_config_txpower, .config_antenna = rt61pci_config_antenna, .config_duration = rt61pci_config_duration, }; static const struct rt2x00_ops rt61pci_ops = { .name = DRV_NAME, .rxd_size = RXD_DESC_SIZE, .txd_size = TXD_DESC_SIZE, .lib = &rt61pci_rt2x00_ops, .hw = &rt61pci_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt61pci_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT61pci module information. */ static struct pci_device_id rt61pci_device_table[] = { /* RT2561s */ { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) }, /* RT2561 v2 */ { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) }, /* RT2661 */ { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " "PCI & PCMCIA chipset based cards"); MODULE_DEVICE_TABLE(pci, rt61pci_device_table); MODULE_FIRMWARE(FIRMWARE_RT2561); MODULE_FIRMWARE(FIRMWARE_RT2561s); MODULE_FIRMWARE(FIRMWARE_RT2661); MODULE_LICENSE("GPL"); static struct pci_driver rt61pci_driver = { .name = DRV_NAME, .id_table = rt61pci_device_table, .probe = rt2x00pci_probe, .remove = __devexit_p(rt2x00pci_remove), #ifdef CONFIG_PM .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, #endif /* CONFIG_PM */ }; static int __init rt61pci_init(void) { return pci_register_driver(&rt61pci_driver); } static void __exit rt61pci_exit(void) { pci_unregister_driver(&rt61pci_driver); } module_init(rt61pci_init); module_exit(rt61pci_exit);