/* Copyright (C) 2004 - 2007 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 generic device routines. Supported chipsets: RT2460, RT2560, RT2570, rt2561, rt2561s, rt2661, rt2571W & rt2671. */ /* * Set enviroment defines for rt2x00.h */ #define DRV_NAME "rt2x00lib" #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00lib.h" #include "rt2x00dev.h" /* * Radio control handlers. */ int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) { int status; /* * Don't enable the radio twice. * or if the hardware button has been disabled. */ if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || (test_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags) && !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags))) return 0; status = rt2x00dev->ops->lib->set_device_state( rt2x00dev, STATE_RADIO_ON); if (status) return status; __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); rt2x00lib_toggle_rx(rt2x00dev, 1); ieee80211_start_queues(rt2x00dev->hw); if (is_interface_present(&rt2x00dev->interface)) rt2x00_start_link_tune(rt2x00dev); return 0; } void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; rt2x00_stop_link_tune(rt2x00dev); ieee80211_stop_queues(rt2x00dev->hw); rt2x00lib_toggle_rx(rt2x00dev, 0); rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); } void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable) { /* * When we are disabling the rx, we should also stop the link tuner. */ if (!enable) rt2x00_stop_link_tune(rt2x00dev); rt2x00dev->ops->lib->set_device_state(rt2x00dev, enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF); /* * When we are enabling the rx, we should also start the link tuner. */ if (enable && is_interface_present(&rt2x00dev->interface)) rt2x00_start_link_tune(rt2x00dev); } static void rt2x00lib_link_tuner(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, link.work.work); /* * Update promisc mode (this function will first check * if updating is really required). */ rt2x00lib_config_promisc(rt2x00dev, rt2x00dev->interface.promisc); /* * Cancel all link tuning if the eeprom has indicated * it is not required. */ if (test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) return; rt2x00dev->ops->lib->link_tuner(rt2x00dev); /* * Increase tuner counter, and reschedule the next link tuner run. */ rt2x00dev->link.count++; queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, LINK_TUNE_INTERVAL); } /* * Config handlers */ void rt2x00lib_config_type(struct rt2x00_dev *rt2x00dev, const int type) { if (!(is_interface_present(&rt2x00dev->interface) ^ test_bit(INTERFACE_ENABLED, &rt2x00dev->flags)) && !(is_monitor_present(&rt2x00dev->interface) ^ test_bit(INTERFACE_ENABLED_MONITOR, &rt2x00dev->flags))) return; rt2x00dev->ops->lib->config_type(rt2x00dev, type); if (type != IEEE80211_IF_TYPE_MNTR) { if (is_interface_present(&rt2x00dev->interface)) __set_bit(INTERFACE_ENABLED, &rt2x00dev->flags); else __clear_bit(INTERFACE_ENABLED, &rt2x00dev->flags); } else { if (is_monitor_present(&rt2x00dev->interface)) __set_bit(INTERFACE_ENABLED_MONITOR, &rt2x00dev->flags); else __clear_bit(INTERFACE_ENABLED_MONITOR, &rt2x00dev->flags); } } void rt2x00lib_config_phymode(struct rt2x00_dev *rt2x00dev, const int phymode) { if (rt2x00dev->rx_status.phymode == phymode) return; rt2x00dev->ops->lib->config_phymode(rt2x00dev, phymode); rt2x00dev->rx_status.phymode = phymode; } void rt2x00lib_config_channel(struct rt2x00_dev *rt2x00dev, const int value, const int channel, const int freq, const int txpower) { if (channel == rt2x00dev->rx_status.channel) return; rt2x00dev->ops->lib->config_channel(rt2x00dev, value, channel, txpower); INFO(rt2x00dev, "Switching channel. " "RF1: 0x%08x, RF2: 0x%08x, RF3: 0x%08x, RF3: 0x%08x.\n", rt2x00dev->rf1, rt2x00dev->rf2, rt2x00dev->rf3, rt2x00dev->rf4); rt2x00dev->rx_status.freq = freq; rt2x00dev->rx_status.channel = channel; } void rt2x00lib_config_promisc(struct rt2x00_dev *rt2x00dev, const int promisc) { /* * Monitor mode implies promisc mode enabled. * In all other instances, check if we need to toggle promisc mode. */ if (is_monitor_present(&rt2x00dev->interface) && !test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags)) { rt2x00dev->ops->lib->config_promisc(rt2x00dev, 1); __set_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags); } if (test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags) != promisc) { rt2x00dev->ops->lib->config_promisc(rt2x00dev, promisc); __change_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags); } } void rt2x00lib_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { if (txpower == rt2x00dev->tx_power) return; rt2x00dev->ops->lib->config_txpower(rt2x00dev, txpower); rt2x00dev->tx_power = txpower; } void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev, const int antenna_tx, const int antenna_rx) { if (rt2x00dev->rx_status.antenna == antenna_rx) return; rt2x00dev->ops->lib->config_antenna(rt2x00dev, antenna_tx, antenna_rx); rt2x00dev->rx_status.antenna = antenna_rx; } /* * Driver initialization handlers. */ static void rt2x00lib_channel(struct ieee80211_channel *entry, const int channel, const int tx_power, const int value) { entry->chan = channel; if (channel <= 14) entry->freq = 2407 + (5 * channel); else entry->freq = 5000 + (5 * channel); entry->val = value; entry->flag = IEEE80211_CHAN_W_IBSS | IEEE80211_CHAN_W_ACTIVE_SCAN | IEEE80211_CHAN_W_SCAN; entry->power_level = tx_power; entry->antenna_max = 0xff; } static void rt2x00lib_rate(struct ieee80211_rate *entry, const int rate,const int mask, const int plcp, const int flags) { entry->rate = rate; entry->val = DEVICE_SET_RATE_FIELD(rate, RATE) | DEVICE_SET_RATE_FIELD(mask, RATEMASK) | DEVICE_SET_RATE_FIELD(plcp, PLCP); entry->flags = flags; entry->val2 = entry->val; if (entry->flags & IEEE80211_RATE_PREAMBLE2) entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE); entry->min_rssi_ack = 0; entry->min_rssi_ack_delta = 0; } static int rt2x00lib_init_hw_modes(struct rt2x00_dev *rt2x00dev, struct hw_mode_spec *spec) { struct ieee80211_hw *hw = rt2x00dev->hw; struct ieee80211_hw_mode *hwmodes; struct ieee80211_channel *channels; struct ieee80211_rate *rates; unsigned int i; unsigned char tx_power; hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL); if (!hwmodes) goto exit; channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); if (!channels) goto exit_free_modes; rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL); if (!rates) goto exit_free_channels; /* * Initialize Rate list. */ rt2x00lib_rate(&rates[0], 10, 0x001, 0x00, IEEE80211_RATE_CCK); rt2x00lib_rate(&rates[1], 20, 0x003, 0x01, IEEE80211_RATE_CCK_2); rt2x00lib_rate(&rates[2], 55, 0x007, 0x02, IEEE80211_RATE_CCK_2); rt2x00lib_rate(&rates[3], 110, 0x00f, 0x03, IEEE80211_RATE_CCK_2); if (spec->num_rates > 4) { rt2x00lib_rate(&rates[4], 60, 0x01f, 0x0b, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[5], 90, 0x03f, 0x0f, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[6], 120, 0x07f, 0x0a, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[7], 180, 0x0ff, 0x0e, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[8], 240, 0x1ff, 0x09, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[9], 360, 0x3ff, 0x0d, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[10], 480, 0x7ff, 0x08, IEEE80211_RATE_OFDM); rt2x00lib_rate(&rates[11], 540, 0xfff, 0x0c, IEEE80211_RATE_OFDM); } /* * Initialize Channel list. */ for (i = 0; i < 14; i++) rt2x00lib_channel(&channels[i], i + 1, spec->tx_power_bg[i], spec->chan_val_bg[i]); if (spec->num_channels > 14) { for (i = 14; i < spec->num_channels; i++) { if (i < 22) channels[i].chan = 36; else if (i < 33) channels[i].chan = 100; else channels[i].chan = 149; channels[i].chan += ((i - 14) * 4); if (spec->tx_power_a) tx_power = spec->tx_power_a[i]; else tx_power = spec->tx_power_default; rt2x00lib_channel(&channels[i], channels[i].chan, tx_power, spec->chan_val_a[i]); } } /* * Intitialize 802.11b * Rates: CCK. * Channels: OFDM. */ if (spec->num_modes > HWMODE_B) { hwmodes[HWMODE_B].mode = MODE_IEEE80211B; hwmodes[HWMODE_B].num_channels = 14; hwmodes[HWMODE_B].num_rates = 4; hwmodes[HWMODE_B].channels = channels; hwmodes[HWMODE_B].rates = rates; } /* * Intitialize 802.11g * Rates: CCK, OFDM. * Channels: OFDM. */ if (spec->num_modes > HWMODE_G) { hwmodes[HWMODE_G].mode = MODE_IEEE80211G; hwmodes[HWMODE_G].num_channels = 14; hwmodes[HWMODE_G].num_rates = spec->num_rates; hwmodes[HWMODE_G].channels = channels; hwmodes[HWMODE_G].rates = rates; } /* * Intitialize 802.11a * Rates: OFDM. * Channels: OFDM, UNII, HiperLAN2. */ if (spec->num_modes > HWMODE_A) { hwmodes[HWMODE_A].mode = MODE_IEEE80211A; hwmodes[HWMODE_A].num_channels = spec->num_channels - 14; hwmodes[HWMODE_A].num_rates = spec->num_rates - 4; hwmodes[HWMODE_A].channels = &channels[14]; hwmodes[HWMODE_A].rates = &rates[4]; } if (spec->num_modes > HWMODE_G && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G])) goto exit_free_rates; if (spec->num_modes > HWMODE_B && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B])) goto exit_free_rates; if (spec->num_modes > HWMODE_A && ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A])) goto exit_free_rates; rt2x00dev->hwmodes = hwmodes; return 0; exit_free_rates: kfree(rates); exit_free_channels: kfree(channels); exit_free_modes: kfree(hwmodes); exit: ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); return -ENOMEM; } static void rt2x00lib_deinit_hw(struct rt2x00_dev *rt2x00dev) { if (test_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags)) ieee80211_unregister_hw(rt2x00dev->hw); if (likely(rt2x00dev->hwmodes)) { kfree(rt2x00dev->hwmodes->channels); kfree(rt2x00dev->hwmodes->rates); kfree(rt2x00dev->hwmodes); rt2x00dev->hwmodes = NULL; } } static int rt2x00lib_init_hw(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; int status; /* * Initialize HW modes. */ status = rt2x00lib_init_hw_modes(rt2x00dev, spec); if (status) return status; /* * Register HW. */ status = ieee80211_register_hw(rt2x00dev->hw); if (status) { rt2x00lib_deinit_hw(rt2x00dev); return status; } __set_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags); return 0; } /* * Initialization/uninitialization handlers. */ static int rt2x00lib_alloc_ring_entries(struct data_ring *ring, const u16 max_entries, const u16 data_size, const u16 desc_size) { struct data_entry *entry; unsigned int i; ring->stats.limit = max_entries; ring->data_size = data_size; ring->desc_size = desc_size; /* * Allocate all ring entries. */ entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; for (i = 0; i < ring->stats.limit; i++) { entry[i].flags = 0; entry[i].ring = ring; entry[i].skb = NULL; } ring->entry = entry; return 0; } static int rt2x00lib_allocate_ring_entries(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; /* * Allocate the RX ring. */ if (rt2x00lib_alloc_ring_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->rxd_size)) return -ENOMEM; /* * First allocate the TX rings. */ txring_for_each(rt2x00dev, ring) { if (rt2x00lib_alloc_ring_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; } /* * Allocate the BEACON ring. */ if (rt2x00lib_alloc_ring_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES, MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; /* * Allocate the Atim ring. */ if (test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags)) { if (rt2x00lib_alloc_ring_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) return -ENOMEM; } return 0; } static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; ring_for_each(rt2x00dev, ring) { kfree(ring->entry); ring->entry = NULL; } } int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) { int status; if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return 0; /* * Allocate all data rings. */ status = rt2x00lib_allocate_ring_entries(rt2x00dev); if (status) { ERROR(rt2x00dev, "DMA allocation failed.\n"); return status; } /* * Initialize the device. */ status = rt2x00dev->ops->lib->initialize(rt2x00dev); if (status) goto exit; __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); /* * Register the rfkill handler. */ status = rt2x00lib_register_rfkill(rt2x00dev); if (status) goto exit_unitialize; return 0; exit_unitialize: rt2x00lib_uninitialize(rt2x00dev); exit: rt2x00lib_free_ring_entries(rt2x00dev); return status; } void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return; /* * Unregister rfkill. */ rt2x00lib_unregister_rfkill(rt2x00dev); /* * Allow the HW to uninitialize. */ rt2x00dev->ops->lib->uninitialize(rt2x00dev); /* * Free allocated datarings. */ rt2x00lib_free_ring_entries(rt2x00dev); } /* * driver allocation handlers. */ static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev) { struct data_ring *ring; unsigned int ring_num; /* * We need the following rings: * RX: 1 * TX: hw->queues * Beacon: 1 * Atim: 1 (if supported) */ ring_num = 2 + rt2x00dev->hw->queues + test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags); ring = kzalloc(sizeof(*ring) * ring_num, GFP_KERNEL); if (!ring) { ERROR(rt2x00dev, "Ring allocation failed.\n"); return -ENOMEM; } /* * Initialize pointers */ rt2x00dev->rx = &ring[0]; rt2x00dev->tx = &ring[1]; rt2x00dev->bcn = &ring[1 + rt2x00dev->hw->queues]; /* * Initialize ring parameters. * cw_min: 2^5 = 32. * cw_max: 2^10 = 1024. */ ring_for_each(rt2x00dev, ring) { ring->rt2x00dev = rt2x00dev; ring->tx_params.aifs = 2; ring->tx_params.cw_min = 5; ring->tx_params.cw_max = 10; } return 0; } int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) { int retval = -ENOMEM; /* * Let the driver probe the device to detect the capabilities. */ retval = rt2x00dev->ops->lib->init_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to allocate device.\n"); goto exit; } /* * Initialize configuration work. */ INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); /* * Reset current working type. */ rt2x00dev->interface.type = -EINVAL; /* * Allocate ring array. */ retval = rt2x00lib_alloc_rings(rt2x00dev); if (retval) goto exit; /* * Initialize ieee80211 structure. */ retval = rt2x00lib_init_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to initialize hw.\n"); goto exit; } /* * Allocatie rfkill. */ retval = rt2x00lib_allocate_rfkill(rt2x00dev); if (retval) goto exit; /* * Open the debugfs entry. */ rt2x00debug_register(rt2x00dev); /* * Check if we need to load the firmware. */ if (test_bit(FIRMWARE_REQUIRED, &rt2x00dev->flags)) { /* * Request firmware and wait with further * initializing of the card until the firmware * has been loaded. */ retval = rt2x00lib_load_firmware(rt2x00dev); if (retval) goto exit; } return 0; exit: rt2x00lib_remove_dev(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) { /* * Disable radio. */ rt2x00lib_disable_radio(rt2x00dev); /* * Uninitialize device. */ rt2x00lib_uninitialize(rt2x00dev); /* * Close debugfs entry. */ rt2x00debug_deregister(rt2x00dev); /* * Free rfkill */ rt2x00lib_free_rfkill(rt2x00dev); /* * Free ieee80211_hw memory. */ rt2x00lib_deinit_hw(rt2x00dev); /* * Free ring structures. */ kfree(rt2x00dev->rx); rt2x00dev->rx = NULL; rt2x00dev->tx = NULL; rt2x00dev->bcn = NULL; /* * Free EEPROM memory. */ kfree(rt2x00dev->eeprom); rt2x00dev->eeprom = NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); /* * Device state handlers */ int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) { int retval; NOTICE(rt2x00dev, "Going to sleep.\n"); rt2x00lib_disable_radio(rt2x00dev); /* * Set device mode to sleep for power management. */ retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); if (retval) return retval; rt2x00lib_remove_dev(rt2x00dev); return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_suspend); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) { int retval; NOTICE(rt2x00dev, "Waking up.\n"); retval = rt2x00lib_probe_dev(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to allocate device.\n"); return retval; } return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_resume); /* * Interrupt context handlers. */ void rt2x00lib_txdone(struct data_entry *entry, const int status, const int retry) { struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; struct ieee80211_tx_status *tx_status = &entry->tx_status; struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats; /* * Update TX statistics. */ tx_status->flags = 0; tx_status->ack_signal = 0; tx_status->excessive_retries = (status == TX_FAIL_RETRY); tx_status->retry_count = retry; if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) { if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY) tx_status->flags |= IEEE80211_TX_STATUS_ACK; else stats->dot11ACKFailureCount++; } tx_status->queue_length = entry->ring->stats.limit; tx_status->queue_number = tx_status->control.queue; if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY) stats->dot11RTSSuccessCount++; else stats->dot11RTSFailureCount++; } /* * Send the tx_status to mac80211, * that method also cleans up the skb structure. */ ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status); entry->skb = NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_txdone); void rt2x00lib_rxdone(struct data_entry *entry, char *data, const int size, const int signal, const int rssi, const int ofdm) { struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; struct ieee80211_hw_mode *mode; struct ieee80211_rate *rate; struct sk_buff *skb; unsigned int i; int val = 0; /* * Update RX statistics. */ mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; for (i = 0; i < mode->num_rates; i++) { rate = &mode->rates[i]; /* * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 0.5kbit/s. */ if (!ofdm) val = DEVICE_GET_RATE_FIELD(rate->val, RATE); else val = DEVICE_GET_RATE_FIELD(rate->val, PLCP); if (val == signal) { /* * Check for preamble bit. */ if (signal & 0x08) val = rate->val2; else val = rate->val; break; } } rx_status->rate = val; rx_status->ssi = rssi; rt2x00_update_link_rssi(&rt2x00dev->link, rssi); /* * Let's allocate a sk_buff where we can store the received data in, * note that if data is NULL, we still have to allocate a sk_buff * but that we should use that to replace the sk_buff which is already * inside the entry. */ skb = dev_alloc_skb(size + NET_IP_ALIGN); if (!skb) return; skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, size); if (data) { memcpy(skb->data, data, size); entry->skb = skb; skb = NULL; } ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status); entry->skb = skb; } EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); /* * TX descriptor initializer */ void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct data_entry *entry, struct data_desc *txd, struct ieee80211_hdr *ieee80211hdr, unsigned int length, struct ieee80211_tx_control *control) { struct data_entry_desc desc; int tx_rate; int bitrate; int duration; int residual; u16 frame_control; u16 seq_ctrl; /* * Identify queue */ if (control->queue < rt2x00dev->hw->queues) desc.queue = control->queue; else desc.queue = 15; /* * Read required fields from ieee80211 header. */ frame_control = le16_to_cpu(ieee80211hdr->frame_control); seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl); tx_rate = control->tx_rate; /* * Check if this is a rts frame */ if (is_rts_frame(frame_control)) { __set_bit(ENTRY_TXD_RTS_FRAME, &entry->flags); if (control->rts_cts_rate) tx_rate = control->rts_cts_rate; } /* * Check for OFDM */ if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATE) __set_bit(ENTRY_TXD_OFDM_RATE, &entry->flags); /* * Check if more fragments are pending */ if (ieee80211_get_morefrag(ieee80211hdr)) __set_bit(ENTRY_TXD_MORE_FRAG, &entry->flags); /* * Beacons and probe responses require the tsf timestamp * to be inserted into the frame. */ if (control->queue == IEEE80211_TX_QUEUE_BEACON || is_probe_resp(frame_control)) __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags); /* * Check if ACK is required */ if (!(control->flags & IEEE80211_TXCTL_NO_ACK)) __set_bit(ENTRY_TXD_REQ_ACK, &entry->flags); /* * Determine with what IFS priority this frame should be send. * Set ifs to IFS_SIFS when the this is not the first fragment, * or this fragment came after RTS/CTS. */ if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags)) desc.ifs = IFS_SIFS; else desc.ifs = IFS_BACKOFF; /* * How the length should be processed depends * on if we are working with OFDM rates or not. */ if (test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags)) { residual = 0; desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f; desc.length_low = ((length + FCS_LEN) & 0x3f); } else { bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE); /* * Convert length to microseconds. */ residual = get_duration_res(length + FCS_LEN, bitrate); duration = get_duration(length + FCS_LEN, bitrate); if (residual != 0) duration++; desc.length_high = duration >> 8; desc.length_low = duration & 0xff; } /* * Create the signal and service values. */ desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP); if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE)) desc.signal |= 0x08; desc.service = 0x04; if (residual <= (8 % 11)) desc.service |= 0x80; rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry, txd, &desc, ieee80211hdr, length, control); } EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); /* * rt2x00lib module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 library"); MODULE_LICENSE("GPL");