/* * BCM47XX Sonics SiliconBackplane MIPS core routines * * Copyright 2004, Broadcom Corporation * All Rights Reserved. * * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE. * * $Id$ */ #include #include #include #include #include #include #include #include #include #include #include /* * Memory segments (32bit kernel mode addresses) */ #undef KUSEG #undef KSEG0 #undef KSEG1 #undef KSEG2 #undef KSEG3 #define KUSEG 0x00000000 #define KSEG0 0x80000000 #define KSEG1 0xa0000000 #define KSEG2 0xc0000000 #define KSEG3 0xe0000000 /* * Map an address to a certain kernel segment */ #undef KSEG0ADDR #undef KSEG1ADDR #undef KSEG2ADDR #undef KSEG3ADDR #define KSEG0ADDR(a) (((a) & 0x1fffffff) | KSEG0) #define KSEG1ADDR(a) (((a) & 0x1fffffff) | KSEG1) #define KSEG2ADDR(a) (((a) & 0x1fffffff) | KSEG2) #define KSEG3ADDR(a) (((a) & 0x1fffffff) | KSEG3) /* * The following macros are especially useful for __asm__ * inline assembler. */ #ifndef __STR #define __STR(x) #x #endif #ifndef STR #define STR(x) __STR(x) #endif /* ********************************************************************* * CP0 Registers ********************************************************************* */ #define C0_INX 0 /* CP0: TLB Index */ #define C0_RAND 1 /* CP0: TLB Random */ #define C0_TLBLO0 2 /* CP0: TLB EntryLo0 */ #define C0_TLBLO C0_TLBLO0 /* CP0: TLB EntryLo0 */ #define C0_TLBLO1 3 /* CP0: TLB EntryLo1 */ #define C0_CTEXT 4 /* CP0: Context */ #define C0_PGMASK 5 /* CP0: TLB PageMask */ #define C0_WIRED 6 /* CP0: TLB Wired */ #define C0_BADVADDR 8 /* CP0: Bad Virtual Address */ #define C0_COUNT 9 /* CP0: Count */ #define C0_TLBHI 10 /* CP0: TLB EntryHi */ #define C0_COMPARE 11 /* CP0: Compare */ #define C0_SR 12 /* CP0: Processor Status */ #define C0_STATUS C0_SR /* CP0: Processor Status */ #define C0_CAUSE 13 /* CP0: Exception Cause */ #define C0_EPC 14 /* CP0: Exception PC */ #define C0_PRID 15 /* CP0: Processor Revision Indentifier */ #define C0_CONFIG 16 /* CP0: Config */ #define C0_LLADDR 17 /* CP0: LLAddr */ #define C0_WATCHLO 18 /* CP0: WatchpointLo */ #define C0_WATCHHI 19 /* CP0: WatchpointHi */ #define C0_XCTEXT 20 /* CP0: XContext */ #define C0_DIAGNOSTIC 22 /* CP0: Diagnostic */ #define C0_BROADCOM C0_DIAGNOSTIC /* CP0: Broadcom Register */ #define C0_ECC 26 /* CP0: ECC */ #define C0_CACHEERR 27 /* CP0: CacheErr */ #define C0_TAGLO 28 /* CP0: TagLo */ #define C0_TAGHI 29 /* CP0: TagHi */ #define C0_ERREPC 30 /* CP0: ErrorEPC */ /* * Macros to access the system control coprocessor */ #define MFC0(source, sel) \ ({ \ int __res; \ __asm__ __volatile__( \ ".set\tnoreorder\n\t" \ ".set\tnoat\n\t" \ ".word\t"STR(0x40010000 | ((source)<<11) | (sel))"\n\t" \ "move\t%0,$1\n\t" \ ".set\tat\n\t" \ ".set\treorder" \ :"=r" (__res) \ : \ :"$1"); \ __res; \ }) #define MTC0(source, sel, value) \ do { \ __asm__ __volatile__( \ ".set\tnoreorder\n\t" \ ".set\tnoat\n\t" \ "move\t$1,%z0\n\t" \ ".word\t"STR(0x40810000 | ((source)<<11) | (sel))"\n\t" \ ".set\tat\n\t" \ ".set\treorder" \ : \ :"Jr" (value) \ :"$1"); \ } while (0) /* * R4x00 interrupt enable / cause bits */ #undef IE_SW0 #undef IE_SW1 #undef IE_IRQ0 #undef IE_IRQ1 #undef IE_IRQ2 #undef IE_IRQ3 #undef IE_IRQ4 #undef IE_IRQ5 #define IE_SW0 (1<< 8) #define IE_SW1 (1<< 9) #define IE_IRQ0 (1<<10) #define IE_IRQ1 (1<<11) #define IE_IRQ2 (1<<12) #define IE_IRQ3 (1<<13) #define IE_IRQ4 (1<<14) #define IE_IRQ5 (1<<15) /* * Bitfields in the R4xx0 cp0 status register */ #define ST0_IE 0x00000001 #define ST0_EXL 0x00000002 #define ST0_ERL 0x00000004 #define ST0_KSU 0x00000018 # define KSU_USER 0x00000010 # define KSU_SUPERVISOR 0x00000008 # define KSU_KERNEL 0x00000000 #define ST0_UX 0x00000020 #define ST0_SX 0x00000040 #define ST0_KX 0x00000080 #define ST0_DE 0x00010000 #define ST0_CE 0x00020000 /* * Status register bits available in all MIPS CPUs. */ #define ST0_IM 0x0000ff00 #define ST0_CH 0x00040000 #define ST0_SR 0x00100000 #define ST0_TS 0x00200000 #define ST0_BEV 0x00400000 #define ST0_RE 0x02000000 #define ST0_FR 0x04000000 #define ST0_CU 0xf0000000 #define ST0_CU0 0x10000000 #define ST0_CU1 0x20000000 #define ST0_CU2 0x40000000 #define ST0_CU3 0x80000000 #define ST0_XX 0x80000000 /* MIPS IV naming */ /* * Cache Operations */ #ifndef Fill_I #define Fill_I 0x14 #endif #define cache_unroll(base,op) \ __asm__ __volatile__(" \ .set noreorder; \ .set mips3; \ cache %1, (%0); \ .set mips0; \ .set reorder" \ : \ : "r" (base), \ "i" (op)); /* * These are the UART port assignments, expressed as offsets from the base * register. These assignments should hold for any serial port based on * a 8250, 16450, or 16550(A). */ #define UART_MCR 4 /* Out: Modem Control Register */ #define UART_MSR 6 /* In: Modem Status Register */ #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */ /* * Returns TRUE if an external UART exists at the given base * register. */ static bool serial_exists(uint8 *regs) { uint8 save_mcr, status1; save_mcr = R_REG(®s[UART_MCR]); W_REG(®s[UART_MCR], UART_MCR_LOOP | 0x0a); status1 = R_REG(®s[UART_MSR]) & 0xf0; W_REG(®s[UART_MCR], save_mcr); return (status1 == 0x90); } /* * Initializes UART access. The callback function will be called once * per found UART. */ void sb_serial_init(void *sbh, void (*add)(void *regs, uint irq, uint baud_base, uint reg_shift)) { void *regs; ulong base; uint irq; int i, n; if ((regs = sb_setcore(sbh, SB_EXTIF, 0))) { extifregs_t *eir = (extifregs_t *) regs; sbconfig_t *sb; /* Determine external UART register base */ sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF); base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1))); /* Determine IRQ */ irq = sb_irq(sbh); /* Disable GPIO interrupt initially */ W_REG(&eir->gpiointpolarity, 0); W_REG(&eir->gpiointmask, 0); /* Search for external UARTs */ n = 2; for (i = 0; i < 2; i++) { regs = (void *) REG_MAP(base + (i * 8), 8); if (serial_exists(regs)) { /* Set GPIO 1 to be the external UART IRQ */ W_REG(&eir->gpiointmask, 2); if (add) add(regs, irq, 13500000, 0); } } /* Add internal UART if enabled */ if (R_REG(&eir->corecontrol) & CC_UE) if (add) add((void *) &eir->uartdata, irq, sb_clock(sbh), 2); } else if ((regs = sb_setcore(sbh, SB_CC, 0))) { chipcregs_t *cc = (chipcregs_t *) regs; uint32 rev, cap, pll, baud_base, div; /* Determine core revision and capabilities */ rev = sb_corerev(sbh); cap = R_REG(&cc->capabilities); pll = cap & CAP_PLL_MASK; /* Determine IRQ */ irq = sb_irq(sbh); if (pll == PLL_TYPE1) { /* PLL clock */ baud_base = sb_clock_rate(pll, R_REG(&cc->clockcontrol_n), R_REG(&cc->clockcontrol_m2)); div = 1; } else if (rev >= 3) { /* Internal backplane clock */ baud_base = sb_clock_rate(pll, R_REG(&cc->clockcontrol_n), R_REG(&cc->clockcontrol_sb)); div = 2; /* Minimum divisor */ W_REG(&cc->clkdiv, ((R_REG(&cc->clkdiv) & ~CLKD_UART) | div)); } else { /* Fixed internal backplane clock */ baud_base = 88000000; div = 48; } /* Clock source depends on strapping if UartClkOverride is unset */ if ((rev > 0) && ((R_REG(&cc->corecontrol) & CC_UARTCLKO) == 0)) { if ((cap & CAP_UCLKSEL) == CAP_UINTCLK) { /* Internal divided backplane clock */ baud_base /= div; } else { /* Assume external clock of 1.8432 MHz */ baud_base = 1843200; } } /* Add internal UARTs */ n = cap & CAP_UARTS_MASK; for (i = 0; i < n; i++) { /* Register offset changed after revision 0 */ if (rev) regs = (void *)((ulong) &cc->uart0data + (i * 256)); else regs = (void *)((ulong) &cc->uart0data + (i * 8)); if (add) add(regs, irq, baud_base, 0); } } } /* Returns the SB interrupt flag of the current core. */ uint32 sb_flag(void *sbh) { void *regs; sbconfig_t *sb; regs = sb_coreregs(sbh); sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF); return (R_REG(&sb->sbtpsflag) & SBTPS_NUM0_MASK); } static const uint32 sbips_int_mask[] = { 0, SBIPS_INT1_MASK, SBIPS_INT2_MASK, SBIPS_INT3_MASK, SBIPS_INT4_MASK }; static const uint32 sbips_int_shift[] = { 0, 0, SBIPS_INT2_SHIFT, SBIPS_INT3_SHIFT, SBIPS_INT4_SHIFT }; /* * Returns the MIPS IRQ assignment of the current core. If unassigned, * 0 is returned. */ uint sb_irq(void *sbh) { uint idx; void *regs; sbconfig_t *sb; uint32 flag, sbipsflag; uint irq = 0; flag = sb_flag(sbh); idx = sb_coreidx(sbh); if ((regs = sb_setcore(sbh, SB_MIPS, 0)) || (regs = sb_setcore(sbh, SB_MIPS33, 0))) { sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF); /* sbipsflag specifies which core is routed to interrupts 1 to 4 */ sbipsflag = R_REG(&sb->sbipsflag); for (irq = 1; irq <= 4; irq++) { if (((sbipsflag & sbips_int_mask[irq]) >> sbips_int_shift[irq]) == flag) break; } if (irq == 5) irq = 0; } sb_setcoreidx(sbh, idx); return irq; } /* Clears the specified MIPS IRQ. */ static void sb_clearirq(void *sbh, uint irq) { void *regs; sbconfig_t *sb; if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) && !(regs = sb_setcore(sbh, SB_MIPS33, 0))) ASSERT(regs); sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF); if (irq == 0) W_REG(&sb->sbintvec, 0); else OR_REG(&sb->sbipsflag, sbips_int_mask[irq]); } /* * Assigns the specified MIPS IRQ to the specified core. Shared MIPS * IRQ 0 may be assigned more than once. */ static void sb_setirq(void *sbh, uint irq, uint coreid, uint coreunit) { void *regs; sbconfig_t *sb; uint32 flag; regs = sb_setcore(sbh, coreid, coreunit); ASSERT(regs); flag = sb_flag(sbh); if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) && !(regs = sb_setcore(sbh, SB_MIPS33, 0))) ASSERT(regs); sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF); if (irq == 0) OR_REG(&sb->sbintvec, 1 << flag); else { flag <<= sbips_int_shift[irq]; ASSERT(!(flag & ~sbips_int_mask[irq])); flag |= R_REG(&sb->sbipsflag) & ~sbips_int_mask[irq]; W_REG(&sb->sbipsflag, flag); } } /* * Initializes clocks and interrupts. SB and NVRAM access must be * initialized prior to calling. */ void sb_mips_init(void *sbh) { ulong hz, ns, tmp; extifregs_t *eir; chipcregs_t *cc; char *value; uint irq; /* Figure out current SB clock speed */ if ((hz = sb_clock(sbh)) == 0) hz = 100000000; ns = 1000000000 / hz; /* Setup external interface timing */ if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) { /* Initialize extif so we can get to the LEDs and external UART */ W_REG(&eir->prog_config, CF_EN); /* Set timing for the flash */ tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */ tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */ tmp = tmp | CEIL(120, ns); /* W0 = 120nS */ W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */ /* Set programmable interface timing for external uart */ tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */ tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */ tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */ tmp = tmp | CEIL(120, ns); /* W0 = 120nS */ W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */ } else if ((cc = sb_setcore(sbh, SB_CC, 0))) { /* Set timing for the flash */ tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */ tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */ tmp |= CEIL(120, ns); /* W0 = 120nS */ W_REG(&cc->flash_waitcount, tmp); W_REG(&cc->pcmcia_memwait, tmp); } /* Chip specific initialization */ switch (sb_chip(sbh)) { case BCM4710_DEVICE_ID: /* Clear interrupt map */ for (irq = 0; irq <= 4; irq++) sb_clearirq(sbh, irq); sb_setirq(sbh, 0, SB_CODEC, 0); sb_setirq(sbh, 0, SB_EXTIF, 0); sb_setirq(sbh, 2, SB_ENET, 1); sb_setirq(sbh, 3, SB_ILINE20, 0); sb_setirq(sbh, 4, SB_PCI, 0); ASSERT(eir); value = nvram_get("et0phyaddr"); if (value && !strcmp(value, "31")) { /* Enable internal UART */ W_REG(&eir->corecontrol, CC_UE); /* Give USB its own interrupt */ sb_setirq(sbh, 1, SB_USB, 0); } else { /* Disable internal UART */ W_REG(&eir->corecontrol, 0); /* Give Ethernet its own interrupt */ sb_setirq(sbh, 1, SB_ENET, 0); sb_setirq(sbh, 0, SB_USB, 0); } break; case BCM4310_DEVICE_ID: MTC0(C0_BROADCOM, 0, MFC0(C0_BROADCOM, 0) & ~(1 << 22)); break; } } uint32 sb_mips_clock(void *sbh) { extifregs_t *eir; chipcregs_t *cc; uint32 n, m; uint idx; uint32 pll_type, rate = 0; /* get index of the current core */ idx = sb_coreidx(sbh); pll_type = PLL_TYPE1; /* switch to extif or chipc core */ if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) { n = R_REG(&eir->clockcontrol_n); m = R_REG(&eir->clockcontrol_sb); } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) { pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK; n = R_REG(&cc->clockcontrol_n); if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) m = R_REG(&cc->clockcontrol_mips); else if (pll_type == PLL_TYPE3) { rate = 200000000; goto out; } else m = R_REG(&cc->clockcontrol_sb); } else goto out; /* calculate rate */ rate = sb_clock_rate(pll_type, n, m); out: /* switch back to previous core */ sb_setcoreidx(sbh, idx); return rate; } static void icache_probe(int *size, int *lsize) { uint32 config1; uint sets, ways; config1 = MFC0(C0_CONFIG, 1); /* Instruction Cache Size = Associativity * Line Size * Sets Per Way */ if ((*lsize = ((config1 >> 19) & 7))) *lsize = 2 << *lsize; sets = 64 << ((config1 >> 22) & 7); ways = 1 + ((config1 >> 16) & 7); *size = *lsize * sets * ways; } #define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4) static void handler(void) { /* Step 11 */ __asm__ ( ".set\tmips32\n\t" "ssnop\n\t" "ssnop\n\t" /* Disable interrupts */ /* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */ "mfc0 $15, $12\n\t" "and $15, $15, -31746\n\t" "mtc0 $15, $12\n\t" "eret\n\t" "nop\n\t" "nop\n\t" ".set\tmips0" ); } /* The following MUST come right after handler() */ static void afterhandler(void) { } /* * Set the MIPS, backplane and PCI clocks as closely as possible. */ bool sb_mips_setclock(void *sbh, uint32 mipsclock, uint32 sbclock, uint32 pciclock) { extifregs_t *eir = NULL; chipcregs_t *cc = NULL; mipsregs_t *mipsr = NULL; volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci; uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm, new_ratio; uint32 pll_type, sync_mode; uint idx, i; typedef struct { uint32 mipsclock; uint16 n; uint32 sb; uint32 pci33; uint32 pci25; } n3m_table_t; static n3m_table_t type1_table[] = { { 96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011 }, /* 96.000 32.000 24.000 */ { 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011 }, /* 100.000 33.333 25.000 */ { 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009 }, /* 104.000 31.200 24.960 */ { 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802 }, /* 108.000 32.400 24.923 */ { 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403 }, /* 112.000 32.000 24.889 */ { 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011 }, /* 115.200 32.000 24.000 */ { 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011 }, /* 120.000 30.000 24.000 */ { 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009 }, /* 124.800 31.200 24.960 */ { 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305 }, /* 128.000 32.000 24.000 */ { 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305 }, /* 132.000 33.000 24.750 */ { 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603 }, /* 136.000 32.640 24.727 */ { 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02 }, /* 140.000 30.000 24.706 */ { 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021 }, /* 144.000 30.857 24.686 */ { 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605 }, /* 150.857 33.000 24.000 */ { 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02 }, /* 152.000 32.571 24.000 */ { 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009 }, /* 156.000 31.200 24.960 */ { 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309 }, /* 160.000 32.000 24.000 */ { 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603 }, /* 163.200 32.640 24.727 */ { 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403 }, /* 168.000 32.000 24.889 */ { 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602 }, /* 176.000 33.000 24.000 */ }; typedef struct { uint32 mipsclock; uint32 sbclock; uint16 n; uint32 sb; uint32 pci33; uint32 m2; uint32 m3; uint32 ratio; uint32 ratio_parm; } n4m_table_t; static n4m_table_t type2_table[] = { { 180000000, 80000000, 0x0403, 0x01010000, 0x01020300, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 180000000, 90000000, 0x0403, 0x01000100, 0x01020300, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }, { 200000000, 100000000, 0x0303, 0x01000000, 0x01000600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 }, { 211200000, 105600000, 0x0902, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 }, { 220800000, 110400000, 0x1500, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 }, { 230400000, 115200000, 0x0604, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 }, { 234000000, 104000000, 0x0b01, 0x01010000, 0x01010700, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 240000000, 120000000, 0x0803, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 }, { 252000000, 126000000, 0x0504, 0x01000100, 0x01020500, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }, { 264000000, 132000000, 0x0903, 0x01000200, 0x01020700, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 }, { 270000000, 120000000, 0x0703, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 276000000, 122666666, 0x1500, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 280000000, 140000000, 0x0503, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 }, { 288000000, 128000000, 0x0604, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 288000000, 144000000, 0x0404, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 }, { 300000000, 133333333, 0x0803, 0x01010000, 0x01020600, 0x01020600, 0x05000100, 0x94, 0x012a0115 }, { 300000000, 150000000, 0x0803, 0x01000100, 0x01020600, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 } }; static n4m_table_t type4_table[] = { { 192000000, 96000000, 0x0702, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 }, { 200000000, 100000000, 0x0009, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 }, { 216000000, 108000000, 0x0111, 0x11020005, 0x01030303, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 }, { 228000000, 101333333, 0x0e02, 0x11030003, 0x11210005, 0x11030305, 0x04000005, 0x94, 0x012a00a9 }, { 228000000, 114000000, 0x0e02, 0x11020005, 0x11210005, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 }, { 240000000, 120000000, 0x0109, 0x11030002, 0x01050203, 0x11030002, 0x04000003, 0x21, 0x0aaa0555 }, { 252000000, 126000000, 0x0203, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 }, { 264000000, 132000000, 0x0602, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 }, { 272000000, 116571428, 0x0c02, 0x04000021, 0x02000909, 0x02000221, 0x04000003, 0x73, 0x254a14a9 }, { 280000000, 120000000, 0x0209, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 }, { 288000000, 123428571, 0x0111, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 }, { 300000000, 120000000, 0x0009, 0x04000009, 0x01030203, 0x02000902, 0x04000002, 0x52, 0x02520129 } }; uint icache_size, ic_lsize; ulong start, end, dst; bool ret = FALSE; /* get index of the current core */ idx = sb_coreidx(sbh); /* switch to extif or chipc core */ if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) { pll_type = PLL_TYPE1; clockcontrol_n = &eir->clockcontrol_n; clockcontrol_sb = &eir->clockcontrol_sb; clockcontrol_pci = &eir->clockcontrol_pci; } else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) { pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK; clockcontrol_n = &cc->clockcontrol_n; clockcontrol_sb = &cc->clockcontrol_sb; clockcontrol_pci = &cc->clockcontrol_pci; } else goto done; /* Store the current clock register values */ orig_n = R_REG(clockcontrol_n); orig_sb = R_REG(clockcontrol_sb); orig_pci = R_REG(clockcontrol_pci); if (pll_type == PLL_TYPE1) { /* Keep the current PCI clock if not specified */ if (pciclock == 0) { pciclock = sb_clock_rate(pll_type, R_REG(clockcontrol_n), R_REG(clockcontrol_pci)); pciclock = (pciclock <= 25000000) ? 25000000 : 33000000; } /* Search for the closest MIPS clock less than or equal to a preferred value */ for (i = 0; i < ARRAYSIZE(type1_table); i++) { ASSERT(type1_table[i].mipsclock == sb_clock_rate(pll_type, type1_table[i].n, type1_table[i].sb)); if (type1_table[i].mipsclock > mipsclock) break; } if (i == 0) { ret = FALSE; goto done; } else { ret = TRUE; i--; } ASSERT(type1_table[i].mipsclock <= mipsclock); /* No PLL change */ if ((orig_n == type1_table[i].n) && (orig_sb == type1_table[i].sb) && (orig_pci == type1_table[i].pci33)) goto done; /* Set the PLL controls */ W_REG(clockcontrol_n, type1_table[i].n); W_REG(clockcontrol_sb, type1_table[i].sb); if (pciclock == 25000000) W_REG(clockcontrol_pci, type1_table[i].pci25); else W_REG(clockcontrol_pci, type1_table[i].pci33); /* Reset */ sb_watchdog(sbh, 1); while (1); } else if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) { n4m_table_t *table = (pll_type == PLL_TYPE2) ? type2_table : type4_table; uint tabsz = (pll_type == PLL_TYPE2) ? ARRAYSIZE(type2_table) : ARRAYSIZE(type4_table); ASSERT(cc); /* Store the current clock register values */ orig_m2 = R_REG(&cc->clockcontrol_m2); orig_mips = R_REG(&cc->clockcontrol_mips); orig_ratio_parm = 0; /* Look up current ratio */ for (i = 0; i < tabsz; i++) { if ((orig_n == table[i].n) && (orig_sb == table[i].sb) && (orig_pci == table[i].pci33) && (orig_m2 == table[i].m2) && (orig_mips == table[i].m3)) { orig_ratio_parm = table[i].ratio_parm; break; } } /* Search for the closest MIPS clock greater or equal to a preferred value */ for (i = 0; i < tabsz; i++) { ASSERT(table[i].mipsclock == sb_clock_rate(pll_type, table[i].n, table[i].m3)); if ((mipsclock <= table[i].mipsclock) && ((sbclock == 0) || (sbclock <= table[i].sbclock))) break; } if (i == tabsz) { ret = FALSE; goto done; } else { ret = TRUE; } /* No PLL change */ if ((orig_n == table[i].n) && (orig_sb == table[i].sb) && (orig_pci == table[i].pci33) && (orig_m2 == table[i].m2) && (orig_mips == table[i].m3)) goto done; /* Set the PLL controls */ W_REG(clockcontrol_n, table[i].n); W_REG(clockcontrol_sb, table[i].sb); W_REG(clockcontrol_pci, table[i].pci33); W_REG(&cc->clockcontrol_m2, table[i].m2); W_REG(&cc->clockcontrol_mips, table[i].m3); /* No ratio change */ if (orig_ratio_parm == table[i].ratio_parm) goto end_fill; new_ratio = table[i].ratio_parm; icache_probe(&icache_size, &ic_lsize); /* Preload the code into the cache */ start = ((ulong) &&start_fill) & ~(ic_lsize - 1); end = ((ulong) &&end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1); while (start < end) { cache_unroll(start, Fill_I); start += ic_lsize; } /* Copy the handler */ start = (ulong) &handler; end = (ulong) &afterhandler; dst = KSEG1ADDR(0x180); for (i = 0; i < (end - start); i += 4) *((ulong *)(dst + i)) = *((ulong *)(start + i)); /* Preload handler into the cache one line at a time */ for (i = 0; i < (end - start); i += 4) cache_unroll(dst + i, Fill_I); /* Clear BEV bit */ MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV); /* Enable interrupts */ MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE)); /* Enable MIPS timer interrupt */ if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) && !(mipsr = sb_setcore(sbh, SB_MIPS33, 0))) ASSERT(mipsr); W_REG(&mipsr->intmask, 1); start_fill: /* step 1, set clock ratios */ MTC0(C0_BROADCOM, 3, new_ratio); MTC0(C0_BROADCOM, 1, 8); /* step 2: program timer intr */ W_REG(&mipsr->timer, 100); (void) R_REG(&mipsr->timer); /* step 3, switch to async */ sync_mode = MFC0(C0_BROADCOM, 4); MTC0(C0_BROADCOM, 4, 1 << 22); /* step 4, set cfg active */ MTC0(C0_BROADCOM, 2, 0x9); /* steps 5 & 6 */ __asm__ __volatile__ ( ".set\tmips3\n\t" "wait\n\t" ".set\tmips0" ); /* step 7, clear cfg_active */ MTC0(C0_BROADCOM, 2, 0); /* Additional Step: set back to orig sync mode */ MTC0(C0_BROADCOM, 4, sync_mode); /* step 8, fake soft reset */ MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | 4); end_fill: /* step 9 set watchdog timer */ sb_watchdog(sbh, 20); (void) R_REG(&cc->chipid); /* step 11 */ __asm__ __volatile__ ( ".set\tmips3\n\t" "sync\n\t" "wait\n\t" ".set\tmips0" ); while (1); } done: /* switch back to previous core */ sb_setcoreidx(sbh, idx); return ret; } /* returns the ncdl value to be programmed into sdram_ncdl for calibration */ uint32 sb_memc_get_ncdl(void *sbh) { sbmemcregs_t *memc; uint32 ret = 0; uint32 config, rd, wr, misc, dqsg, cd, sm, sd; uint idx, rev; idx = sb_coreidx(sbh); memc = (sbmemcregs_t *)sb_setcore(sbh, SB_MEMC, 0); if (memc == 0) goto out; rev = sb_corerev(sbh); config = R_REG(&memc->config); wr = R_REG(&memc->wrncdlcor); rd = R_REG(&memc->rdncdlcor); misc = R_REG(&memc->miscdlyctl); dqsg = R_REG(&memc->dqsgatencdl); rd &= MEMC_RDNCDLCOR_RD_MASK; wr &= MEMC_WRNCDLCOR_WR_MASK; dqsg &= MEMC_DQSGATENCDL_G_MASK; if (config & MEMC_CONFIG_DDR) { ret = (wr << 16) | (rd << 8) | dqsg; } else { if (rev > 0) cd = rd; else cd = (rd == MEMC_CD_THRESHOLD) ? rd : (wr + MEMC_CD_THRESHOLD); sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT; sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT; ret = (sm << 16) | (sd << 8) | cd; } out: /* switch back to previous core */ sb_setcoreidx(sbh, idx); return ret; }