/* vi: set sw=4 ts=4: */ /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), which also acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and Jon L. Bentley. This code is licensed under the LGPLv2: LGPL (http://www.gnu.org/copyleft/lgpl.html */ /* Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). More efficient reading of huffman codes, a streamlined read_bunzip() function, and various other tweaks. In (limited) tests, approximately 20% faster than bzcat on x86 and about 10% faster on arm. Note that about 2/3 of the time is spent in read_unzip() reversing the Burrows-Wheeler transformation. Much of that time is delay resulting from cache misses. I would ask that anyone benefiting from this work, especially those using it in commercial products, consider making a donation to my local non-profit hospice organization in the name of the woman I loved, who passed away Feb. 12, 2003. In memory of Toni W. Hagan Hospice of Acadiana, Inc. 2600 Johnston St., Suite 200 Lafayette, LA 70503-3240 Phone (337) 232-1234 or 1-800-738-2226 Fax (337) 232-1297 http://www.hospiceacadiana.com/ Manuel */ /* May 21, 2004 Manuel Novoa III * Modified to load a bzip'd kernel on the linksys wrt54g. * * May 30, 2004 * Further size reduction via inlining and disabling len check code. */ /**********************************************************************/ /* Note... the LED code is specific to the v2.0 (and GS?) unit. */ #undef ENABLE_LEDS /* #define ENABLE_LEDS 1 */ /* Do we want to bother with checking the bzip'd data for errors? */ #undef ENABLE_BUNZIP_CHECKING /* #define ENABLE_BUNZIP_CHECKING 1 */ /**********************************************************************/ /* #include */ #define BCM4710_FLASH 0x1fc00000 /* Flash */ #define KSEG0 0x80000000 #define KSEG1 0xa0000000 #define KSEG1ADDR(a) ((((unsigned)(a)) & 0x1fffffffU) | KSEG1) /* The following cache code was taken from the file bcm4710_cache.h * which was necessarily GPL as it was used to build the linksys * kernel for the wrt54g. */ #warning icache [l]size hardcoded #define icache_size 8192 #define ic_lsize 16 #define Index_Invalidate_I 0x00 #define cache_unroll(base,op) \ __asm__ __volatile__( \ ".set noreorder;\n" \ ".set mips3;\n" \ "cache %1, (%0);\n" \ ".set mips0;\n" \ ".set reorder\n" \ : \ : "r" (base), \ "i" (op)); static __inline__ void blast_icache(void) { unsigned long start = KSEG0; unsigned long end = (start + icache_size); while(start < end) { cache_unroll(start,Index_Invalidate_I); start += ic_lsize; } } /**********************************************************************/ #ifndef INT_MAX #define INT_MAX (((1 << 30)-1)*2 + 1) #endif /**********************************************************************/ #ifdef ENABLE_BUNZIP_CHECKING #define REBOOT do {} while (1) #else #define REBOOT ((void) 0) #endif /**********************************************************************/ #ifdef ENABLE_LEDS #define LED_POWER_ON 0x02 /* OFF == flashing */ #define LED_DMZ_OFF 0x80 #define LED_WLAN_OFF 0x01 #define LED_CODE_0 (LED_POWER_ON | LED_DMZ_OFF | LED_WLAN_OFF) #define LED_CODE_1 (LED_POWER_ON | LED_DMZ_OFF) #define LED_CODE_2 (LED_POWER_ON | LED_WLAN_OFF) #define LED_CODE_3 (LED_POWER_ON) #define SET_LED_ERROR(X) \ do { \ *(volatile u8*)(KSEG1ADDR(0x18000064))=(X & ~LED_POWER_ON); \ *(volatile u8*)(KSEG1ADDR(0x18000068))=0; /* Disable changes */ \ REBOOT; \ } while (0) #define SET_LED(X) *(volatile u8*)(KSEG1ADDR(0x18000064))=X; typedef unsigned char u8; #else #define SET_LED_ERROR(X) REBOOT #define SET_LED(X) ((void)0) #endif /**********************************************************************/ /* Constants for huffman coding */ #define MAX_GROUPS 6 #define GROUP_SIZE 50 /* 64 would have been more efficient */ #define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */ #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ #define SYMBOL_RUNA 0 #define SYMBOL_RUNB 1 /* Status return values */ #define RETVAL_OK 0 #define RETVAL_LAST_BLOCK (-1) #define RETVAL_NOT_BZIP_DATA (-2) #define RETVAL_UNEXPECTED_INPUT_EOF (-3) #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) #define RETVAL_DATA_ERROR (-5) #define RETVAL_OUT_OF_MEMORY (-6) #define RETVAL_OBSOLETE_INPUT (-7) /* Other housekeeping constants */ #define IOBUF_SIZE 4096 /* This is what we know about each huffman coding group */ struct group_data { /* We have an extra slot at the end of limit[] for a sentinal value. */ int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS]; int minLen, maxLen; }; /* Structure holding all the housekeeping data, including IO buffers and memory that persists between calls to bunzip */ typedef struct { /* State for interrupting output loop */ int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent; /* I/O tracking data (file handles, buffers, positions, etc.) */ #if defined(ENABLE_BUNZIP_CHECKING) int /*in_fd,out_fd,*/ inbufCount,inbufPos /*,outbufPos*/; #else int /*in_fd,out_fd,inbufCount,*/ inbufPos /*,outbufPos*/; #endif unsigned char *inbuf /*,*outbuf*/; unsigned int inbufBitCount, inbufBits; /* The CRC values stored in the block header and calculated from the data */ #ifdef ENABLE_BUNZIP_CHECKING unsigned int crc32Table[256],headerCRC, totalCRC, writeCRC; /* Intermediate buffer and its size (in bytes) */ unsigned int *dbuf, dbufSize; #else unsigned int *dbuf; #endif /* These things are a bit too big to go on the stack */ unsigned char selectors[32768]; /* nSelectors=15 bits */ struct group_data groups[MAX_GROUPS]; /* huffman coding tables */ } bunzip_data; static int get_next_block(bunzip_data *bd); /**********************************************************************/ /* Undo burrows-wheeler transform on intermediate buffer to produce output. If start_bunzip was initialized with out_fd=-1, then up to len bytes of data are written to outbuf. Return value is number of bytes written or error (all errors are negative numbers). If out_fd!=-1, outbuf and len are ignored, data is written to out_fd and return is RETVAL_OK or error. */ static __inline__ int read_bunzip(bunzip_data *bd, char *outbuf, int len) { const unsigned int *dbuf; int pos,current,previous,gotcount; #ifdef ENABLE_LEDS int led_state = LED_CODE_2; #endif /* If last read was short due to end of file, return last block now */ if(bd->writeCount<0) return bd->writeCount; gotcount = 0; dbuf=bd->dbuf; pos=bd->writePos; current=bd->writeCurrent; /* We will always have pending decoded data to write into the output buffer unless this is the very first call (in which case we haven't huffman-decoded a block into the intermediate buffer yet). */ if (bd->writeCopies) { /* Inside the loop, writeCopies means extra copies (beyond 1) */ --bd->writeCopies; /* Loop outputting bytes */ for(;;) { #if 0 /* Might want to enable this if passing a limiting size. */ /* #ifdef ENABLE_BUNZIP_CHECKING */ /* If the output buffer is full, snapshot state and return */ if(gotcount >= len) { bd->writePos=pos; bd->writeCurrent=current; bd->writeCopies++; return len; } #endif /* Write next byte into output buffer, updating CRC */ outbuf[gotcount++] = current; #ifdef ENABLE_BUNZIP_CHECKING bd->writeCRC=(((bd->writeCRC)<<8) ^bd->crc32Table[((bd->writeCRC)>>24)^current]); #endif /* Loop now if we're outputting multiple copies of this byte */ if (bd->writeCopies) { --bd->writeCopies; continue; } decode_next_byte: if (!bd->writeCount--) break; /* Follow sequence vector to undo Burrows-Wheeler transform */ previous=current; pos=dbuf[pos]; current=pos&0xff; pos>>=8; /* After 3 consecutive copies of the same byte, the 4th is a repeat count. We count down from 4 instead * of counting up because testing for non-zero is faster */ if(--bd->writeRunCountdown) { if(current!=previous) bd->writeRunCountdown=4; } else { /* We have a repeated run, this byte indicates the count */ bd->writeCopies=current; current=previous; bd->writeRunCountdown=5; /* Sometimes there are just 3 bytes (run length 0) */ if(!bd->writeCopies) goto decode_next_byte; /* Subtract the 1 copy we'd output anyway to get extras */ --bd->writeCopies; } } #ifdef ENABLE_BUNZIP_CHECKING /* Decompression of this block completed successfully */ bd->writeCRC=~bd->writeCRC; bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC; /* If this block had a CRC error, force file level CRC error. */ if(bd->writeCRC!=bd->headerCRC) { bd->totalCRC=bd->headerCRC+1; return RETVAL_LAST_BLOCK; } #endif } #ifdef ENABLE_LEDS if (led_state == LED_CODE_2) { led_state = LED_CODE_1; } else { led_state = LED_CODE_2; } SET_LED(led_state); #endif /* Refill the intermediate buffer by huffman-decoding next block of input */ /* (previous is just a convenient unused temp variable here) */ previous=get_next_block(bd); #ifdef ENABLE_BUNZIP_CHECKING if(previous) { bd->writeCount=previous; return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount; } bd->writeCRC=0xffffffffUL; #else if (previous) return gotcount; #endif pos=bd->writePos; current=bd->writeCurrent; goto decode_next_byte; } /**********************************************************************/ /* WARNING!!! Must be the first function!!! */ void load_and_run(unsigned long ra) { int dbuf[900000]; /* Maximum requred */ bunzip_data bd; unsigned int i; #ifdef ENABLE_BUNZIP_CHECKING unsigned int j, c; int r; #endif char *p; #ifdef ENABLE_LEDS *(volatile u8*)(KSEG1ADDR(0x18000068))=0x83; /* Allow all bits to change */ SET_LED(LED_CODE_0); #endif /* memset(&bd,0,sizeof(bunzip_data)); */ p = (char *) &bd; for (i = 0 ; i < sizeof(bunzip_data) ; i++) { p[i] = 0; } /* Find start of flash and adjust for pmon partition. */ p = ((char *) KSEG1ADDR(BCM4710_FLASH)) + 0x10000; SET_LED(LED_CODE_1); /* Find the start of the bzip'd data. */ while ((p[0]!='B') || (p[1]!='Z') || (p[2]!='h') /*|| (p[3]!='9')*/) ++p; SET_LED(LED_CODE_2); /* Setup input buffer */ bd.inbuf=p+4; /* Skip the "BZh9" header. */ #ifdef ENABLE_BUNZIP_CHECKING bd.inbufCount=INT_MAX; /* Init the CRC32 table (big endian) */ for(i=0;i<256;i++) { c=i<<24; for(j=8;j;j--) c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1); bd.crc32Table[i]=c; } bd.dbufSize=900000; #endif bd.dbuf=dbuf; /* Actually do the bunzip */ #ifdef ENABLE_BUNZIP_CHECKING r = read_bunzip(&bd, ((char *) LOADADDR), INT_MAX); if (r > 0) { if (bd.headerCRC==bd.totalCRC) { SET_LED(LED_CODE_3); { int code = LED_WLAN_OFF; int i, j; for (j=0 ; j < 4 ; j++) { for (i=0; i<(1<<27) ; i++) {} SET_LED(code); code ^= LED_WLAN_OFF; } } blast_icache(); /* Jump to load address */ ((void (*)(void)) LOADADDR)(); } else { SET_LED_ERROR(LED_CODE_3); } } else { SET_LED_ERROR(LED_CODE_2); } #else read_bunzip(&bd, ((char *) LOADADDR), INT_MAX); blast_icache(); /* Jump to load address */ ((void (*)(void)) LOADADDR)(); #endif } /**********************************************************************/ /* Return the next nnn bits of input. All reads from the compressed input are done through this function. All reads are big endian */ static unsigned int get_bits(bunzip_data *bd, char bits_wanted) { unsigned int bits=0; /* If we need to get more data from the byte buffer, do so. (Loop getting one byte at a time to enforce endianness and avoid unaligned access.) */ while (bd->inbufBitCountinbufPos==bd->inbufCount) { SET_LED_ERROR(LED_CODE_0); } #endif /* Avoid 32-bit overflow (dump bit buffer to top of output) */ if(bd->inbufBitCount>=24) { bits=bd->inbufBits&((1<inbufBitCount)-1); bits_wanted-=bd->inbufBitCount; bits<<=bits_wanted; bd->inbufBitCount=0; } /* Grab next 8 bits of input from buffer. */ bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++]; bd->inbufBitCount+=8; } /* Calculate result */ bd->inbufBitCount-=bits_wanted; bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<dbuf; #ifdef ENABLE_BUNZIP_CHECKING dbufSize=bd->dbufSize; #endif selectors=bd->selectors; /* Read in header signature and CRC, then validate signature. (last block signature means CRC is for whole file, return now) */ i = get_bits(bd,24); j = get_bits(bd,24); #ifdef ENABLE_BUNZIP_CHECKING bd->headerCRC=get_bits(bd,32); if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; /* We can add support for blockRandomised if anybody complains. There was some code for this in busybox 1.0.0-pre3, but nobody ever noticed that it didn't actually work. */ if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT; if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR; #else get_bits(bd,32); if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; get_bits(bd,1); origPtr=get_bits(bd,24); #endif /* mapping table: if some byte values are never used (encoding things like ascii text), the compression code removes the gaps to have fewer symbols to deal with, and writes a sparse bitfield indicating which values were present. We make a translation table to convert the symbols back to the corresponding bytes. */ t=get_bits(bd, 16); symTotal=0; for (i=0;i<16;i++) { if(t&(1<<(15-i))) { k=get_bits(bd,16); for(j=0;j<16;j++) if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j; } } /* How many different huffman coding groups does this block use? */ groupCount=get_bits(bd,3); #ifdef ENABLE_BUNZIP_CHECKING if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR; #endif /* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding group. Read in the group selector list, which is stored as MTF encoded bit runs. (MTF=Move To Front, as each value is used it's moved to the start of the list.) */ #ifdef ENABLE_BUNZIP_CHECKING if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR; #else nSelectors=get_bits(bd, 15); #endif for(i=0; i=groupCount) return RETVAL_DATA_ERROR; #else for(j=0;get_bits(bd,1);j++) ; #endif /* Decode MTF to get the next selector */ uc = mtfSymbol[j]; for(;j;j--) mtfSymbol[j] = mtfSymbol[j-1]; mtfSymbol[0]=selectors[i]=uc; } /* Read the huffman coding tables for each group, which code for symTotal literal symbols, plus two run symbols (RUNA, RUNB) */ symCount=symTotal+2; for (j=0; j (MAX_HUFCODE_BITS-1)) return RETVAL_DATA_ERROR; #endif /* If first bit is 0, stop. Else second bit indicates whether to increment or decrement the value. Optimization: grab 2 bits and unget the second if the first was 0. */ k = get_bits(bd,2); if (k < 2) { bd->inbufBitCount++; break; } /* Add one if second bit 1, else subtract 1. Avoids if/else */ t+=(((k+1)&2)-1); } /* Correct for the initial -1, to get the final symbol length */ length[i]=t+1; } /* Find largest and smallest lengths in this group */ minLen=maxLen=length[0]; for(i = 1; i < symCount; i++) { if(length[i] > maxLen) maxLen = length[i]; else if(length[i] < minLen) minLen = length[i]; } /* Calculate permute[], base[], and limit[] tables from length[]. * * permute[] is the lookup table for converting huffman coded symbols * into decoded symbols. base[] is the amount to subtract from the * value of a huffman symbol of a given length when using permute[]. * * limit[] indicates the largest numerical value a symbol with a given * number of bits can have. This is how the huffman codes can vary in * length: each code with a value>limit[length] needs another bit. */ hufGroup=bd->groups+j; hufGroup->minLen = minLen; hufGroup->maxLen = maxLen; /* Note that minLen can't be smaller than 1, so we adjust the base and limit array pointers so we're not always wasting the first entry. We do this again when using them (during symbol decoding).*/ base=hufGroup->base-1; limit=hufGroup->limit-1; /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */ pp=0; for(i=minLen;i<=maxLen;i++) { temp[i]=limit[i]=0; for(t=0;tpermute[pp++] = t; } /* Count symbols coded for at each bit length */ for (i=0;ilimit[length] comparison. */ limit[i]= (pp << (maxLen - i)) - 1; pp<<=1; base[i+1]=pp-(t+=temp[i]); } limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */ limit[maxLen]=pp+temp[maxLen]-1; base[minLen]=0; } /* We've finished reading and digesting the block header. Now read this block's huffman coded symbols from the file and undo the huffman coding and run length encoding, saving the result into dbuf[dbufCount++]=uc */ /* Initialize symbol occurrence counters and symbol Move To Front table */ for(i=0;i<256;i++) { byteCount[i] = 0; mtfSymbol[i]=(unsigned char)i; } /* Loop through compressed symbols. */ runPos=dbufCount=symCount=selector=0; for(;;) { /* Determine which huffman coding group to use. */ if(!(symCount--)) { symCount=GROUP_SIZE-1; #ifdef ENABLE_BUNZIP_CHECKING if(selector>=nSelectors) return RETVAL_DATA_ERROR; #endif hufGroup=bd->groups+selectors[selector++]; base=hufGroup->base-1; limit=hufGroup->limit-1; } /* Read next huffman-coded symbol. */ /* Note: It is far cheaper to read maxLen bits and back up than it is to read minLen bits and then an additional bit at a time, testing as we go. Because there is a trailing last block (with file CRC), there is no danger of the overread causing an unexpected EOF for a valid compressed file. As a further optimization, we do the read inline (falling back to a call to get_bits if the buffer runs dry). The following (up to got_huff_bits:) is equivalent to j=get_bits(bd,hufGroup->maxLen); */ while (bd->inbufBitCountmaxLen) { #ifdef ENABLE_BUNZIP_CHECKING if(bd->inbufPos==bd->inbufCount) { j = get_bits(bd,hufGroup->maxLen); goto got_huff_bits; } #endif bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++]; bd->inbufBitCount+=8; }; bd->inbufBitCount-=hufGroup->maxLen; j = (bd->inbufBits>>bd->inbufBitCount)&((1<maxLen)-1); got_huff_bits: /* Figure how how many bits are in next symbol and unget extras */ i=hufGroup->minLen; while(j>limit[i]) ++i; bd->inbufBitCount += (hufGroup->maxLen - i); /* Huffman decode value to get nextSym (with bounds checking) */ #ifdef ENABLE_BUNZIP_CHECKING if ((i > hufGroup->maxLen) || (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i])) >= MAX_SYMBOLS)) return RETVAL_DATA_ERROR; #else j=(j>>(hufGroup->maxLen-i))-base[i]; #endif nextSym = hufGroup->permute[j]; /* We have now decoded the symbol, which indicates either a new literal byte, or a repeated run of the most recent literal byte. First, check if nextSym indicates a repeated run, and if so loop collecting how many times to repeat the last literal. */ if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ /* If this is the start of a new run, zero out counter */ if(!runPos) { runPos = 1; t = 0; } /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at each bit position, add 1 or 2 instead. For example, 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. You can make any bit pattern that way using 1 less symbol than the basic or 0/1 method (except all bits 0, which would use no symbols, but a run of length 0 doesn't mean anything in this context). Thus space is saved. */ t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ runPos <<= 1; continue; } /* When we hit the first non-run symbol after a run, we now know how many times to repeat the last literal, so append that many copies to our buffer of decoded symbols (dbuf) now. (The last literal used is the one at the head of the mtfSymbol array.) */ if(runPos) { runPos=0; #ifdef ENABLE_BUNZIP_CHECKING if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR; #endif uc = symToByte[mtfSymbol[0]]; byteCount[uc] += t; while(t--) dbuf[dbufCount++]=uc; } /* Is this the terminating symbol? */ if(nextSym>symTotal) break; /* At this point, nextSym indicates a new literal character. Subtract one to get the position in the MTF array at which this literal is currently to be found. (Note that the result can't be -1 or 0, because 0 and 1 are RUNA and RUNB. But another instance of the first symbol in the mtf array, position 0, would have been handled as part of a run above. Therefore 1 unused mtf position minus 2 non-literal nextSym values equals -1.) */ #ifdef ENABLE_BUNZIP_CHECKING if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR; #endif i = nextSym - 1; uc = mtfSymbol[i]; /* Adjust the MTF array. Since we typically expect to move only a * small number of symbols, and are bound by 256 in any case, using * memmove here would typically be bigger and slower due to function * call overhead and other assorted setup costs. */ do { mtfSymbol[i] = mtfSymbol[i-1]; } while (--i); mtfSymbol[0] = uc; uc=symToByte[uc]; /* We have our literal byte. Save it into dbuf. */ byteCount[uc]++; dbuf[dbufCount++] = (unsigned int)uc; } /* At this point, we've read all the huffman-coded symbols (and repeated runs) for this block from the input stream, and decoded them into the intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. Now undo the Burrows-Wheeler transform on dbuf. See http://dogma.net/markn/articles/bwt/bwt.htm */ /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ j=0; for(i=0;i<256;i++) { k=j+byteCount[i]; byteCount[i] = j; j=k; } /* Figure out what order dbuf would be in if we sorted it. */ for (i=0;i=dbufCount) return RETVAL_DATA_ERROR; #endif bd->writePos=dbuf[origPtr]; bd->writeCurrent=(unsigned char)(bd->writePos&0xff); bd->writePos>>=8; bd->writeRunCountdown=5; } bd->writeCount=dbufCount; return RETVAL_OK; }