/* * lib/attr.c Netlink Attributes * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation version 2.1 * of the License. * * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch> */ #include <netlink-local.h> #include <netlink/netlink.h> #include <netlink/utils.h> #include <netlink/addr.h> #include <netlink/attr.h> #include <netlink/msg.h> #include <linux/socket.h> /** * @ingroup msg * @defgroup attr Attributes * Netlink Attributes Construction/Parsing Interface * * \section attr_sec Netlink Attributes * Netlink attributes allow for data chunks of arbitary length to be * attached to a netlink message. Each attribute is encoded with a * type and length field, both 16 bits, stored in the attribute header * preceding the attribute data. The main advantage of using attributes * over packing everything into the family header is that the interface * stays extendable as new attributes can supersede old attributes while * remaining backwards compatible. Also attributes can be defined optional * thus avoiding the transmission of unnecessary empty data blocks. * Special nested attributes allow for more complex data structures to * be transmitted, e.g. trees, lists, etc. * * While not required, netlink attributes typically follow the family * header of a netlink message and must be properly aligned to NLA_ALIGNTO: * @code * +----------------+- - -+---------------+- - -+------------+- - -+ * | Netlink Header | Pad | Family Header | Pad | Attributes | Pad | * +----------------+- - -+---------------+- - -+------------+- - -+ * @endcode * * The actual attributes are chained together each separately aligned to * NLA_ALIGNTO. The position of an attribute is defined based on the * length field of the preceding attributes: * @code * +-------------+- - -+-------------+- - -+------ * | Attribute 1 | Pad | Attribute 2 | Pad | ... * +-------------+- - -+-------------+- - -+------ * nla_next(attr1)------^ * @endcode * * The attribute itself consists of the attribute header followed by * the actual payload also aligned to NLA_ALIGNTO. The function nla_data() * returns a pointer to the start of the payload while nla_len() returns * the length of the payload in bytes. * * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not * safe to dereference any 64 bit data types directly. * * @code * <----------- nla_total_size(payload) -----------> * <-------- nla_attr_size(payload) ---------> * +------------------+- - -+- - - - - - - - - +- - -+ * | Attribute Header | Pad | Payload | Pad | * +------------------+- - -+- - - - - - - - - +- - -+ * nla_data(nla)-------------^ * <- nla_len(nla) -> * @endcode * * @subsection attr_datatypes Attribute Data Types * A number of basic data types are supported to simplify access and * validation of netlink attributes. This data type information is * not encoded in the attribute, both the kernel and userspace part * are required to share this information on their own. * * One of the major advantages of these basic types is the automatic * validation of each attribute based on an attribute policy. The * validation covers most of the checks required to safely use * attributes and thus keeps the individual sanity check to a minimum. * * Never access attribute payload without ensuring basic validation * first, attributes may: * - not be present even though required * - contain less actual payload than expected * - fake a attribute length which exceeds the end of the message * - contain unterminated character strings * * Policies are defined as array of the struct nla_policy. The array is * indexed with the attribute type, therefore the array must be sized * accordingly. * @code * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... }, * }; * * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy); * @endcode * * Some basic validations are performed on every attribute, regardless of type. * - If the attribute type exceeds the maximum attribute type specified or * the attribute type is lesser-or-equal than zero, the attribute will * be silently ignored. * - If the payload length falls below the \a minlen value the attribute * will be rejected. * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen * value the attribute will be rejected. * * * @par Unspecific Attribute (NLA_UNSPEC) * This is the standard type if no type is specified. It is used for * binary data of arbitary length. Typically this attribute carries * a binary structure or a stream of bytes. * @par * @code * // In this example, we will assume a binary structure requires to * // be transmitted. The definition of the structure will typically * // go into a header file available to both the kernel and userspace * // side. * // * // Note: Be careful when putting 64 bit data types into a structure. * // The attribute payload is only aligned to 4 bytes, dereferencing * // the member may fail. * struct my_struct { * int a; * int b; * }; * * // The validation function will not enforce an exact length match to * // allow structures to grow as required. Note: While it is allowed * // to add members to the end of the structure, changing the order or * // inserting members in the middle of the structure will break your * // binary interface. * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_MY_STRICT] = { .type = NLA_UNSPEC, * .minlen = sizeof(struct my_struct) }, * * // The binary structure is appened to the message using nla_put() * struct my_struct foo = { .a = 1, .b = 2 }; * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo); * * // On the receiving side, a pointer to the structure pointing inside * // the message payload is returned by nla_get(). * if (attrs[ATTR_MY_STRUCT]) * struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]); * @endcode * * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64) * Integers come in different sizes from 8 bit to 64 bit. However, since the * payload length is aligned to 4 bytes, integers smaller than 32 bit are * only useful to enforce the maximum range of values. * @par * \b Note: There is no difference made between signed and unsigned integers. * The validation only enforces the minimal payload length required to store * an integer of specified type. * @par * @code * // Even though possible, it does not make sense to specify .minlen or * // .maxlen for integer types. The data types implies the corresponding * // minimal payload length. * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_FOO] = { .type = NLA_U32 }, * * // Numeric values can be appended directly using the respective * // nla_put_uxxx() function * nla_put_u32(msg, ATTR_FOO, 123); * * // Same for the receiving side. * if (attrs[ATTR_FOO]) * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); * @endcode * * @par Character string (NLA_STRING) * This data type represents a NUL terminated character string of variable * length. For binary data streams the type NLA_UNSPEC is recommended. * @par * @code * // Enforce a NUL terminated character string of at most 4 characters * // including the NUL termination. * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 }, * * // nla_put_string() creates a string attribute of the necessary length * // and appends it to the message including the NUL termination. * nla_put_string(msg, ATTR_BAR, "some text"); * * // It is safe to use the returned character string directly if the * // attribute has been validated as the validation enforces the proper * // termination of the string. * if (attrs[ATTR_BAR]) * char *text = nla_get_string(attrs[ATTR_BAR]); * @endcode * * @par Flag (NLA_FLAG) * This attribute type may be used to indicate the presence of a flag. The * attribute is only valid if the payload length is zero. The presence of * the attribute header indicates the presence of the flag. * @par * @code * // This attribute type is special as .minlen and .maxlen have no effect. * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_FLAG] = { .type = NLA_FLAG }, * * // nla_put_flag() appends a zero sized attribute to the message. * nla_put_flag(msg, ATTR_FLAG); * * // There is no need for a receival function, the presence is the value. * if (attrs[ATTR_FLAG]) * // flag is present * @endcode * * @par Micro Seconds (NLA_MSECS) * * @par Nested Attribute (NLA_NESTED) * Attributes can be nested and put into a container to create groups, lists * or to construct trees of attributes. Nested attributes are often used to * pass attributes to a subsystem where the top layer has no knowledge of the * configuration possibilities of each subsystem. * @par * \b Note: When validating the attributes using nlmsg_validate() or * nlmsg_parse() it will only affect the top level attributes. Each * level of nested attributes must be validated seperately using * nla_parse_nested() or nla_validate(). * @par * @code * // The minimal length policy may be used to enforce the presence of at * // least one attribute. * static struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN }, * * // Nested attributes are constructed by enclosing the attributes * // to be nested with calls to nla_nest_start() respetively nla_nest_end(). * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS); * nla_put_u32(msg, ATTR_FOO, 123); * nla_put_string(msg, ATTR_BAR, "some text"); * nla_nest_end(msg, opts); * * // Various methods exist to parse nested attributes, the easiest being * // nla_parse_nested() which also allows validation in the same step. * if (attrs[ATTR_OPTS]) { * struct nlattr *nested[ATTR_MAX+1]; * * nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy); * * if (nested[ATTR_FOO]) * uint32_t foo = nla_get_u32(nested[ATTR_FOO]); * } * @endcode * * @subsection attr_exceptions Exception Based Attribute Construction * Often a large number of attributes are added to a message in a single * function. In order to simplify error handling, a second set of * construction functions exist which jump to a error label when they * fail instead of returning an error code. This second set consists * of macros which are named after their error code based counterpart * except that the name is written all uppercase. * * All of the macros jump to the target \c nla_put_failure if they fail. * @code * void my_func(struct nl_msg *msg) * { * NLA_PUT_U32(msg, ATTR_FOO, 10); * NLA_PUT_STRING(msg, ATTR_BAR, "bar"); * * return 0; * * nla_put_failure: * return -NLE_NOMEM; * } * @endcode * * @subsection attr_examples Examples * @par Example 1.1 Constructing a netlink message with attributes. * @code * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu) * { * struct nl_msg *msg; * struct nlattr *info, *vlan; * struct ifinfomsg ifi = { * .ifi_family = AF_INET, * .ifi_index = ifindex, * }; * * // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO * if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO))) * return NULL; * * // Append the family specific header (struct ifinfomsg) * if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0) * goto nla_put_failure * * // Append a 32 bit integer attribute to carry the MTU * NLA_PUT_U32(msg, IFLA_MTU, mtu); * * // Append a unspecific attribute to carry the link layer address * NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr); * * // Append a container for nested attributes to carry link information * if (!(info = nla_nest_start(msg, IFLA_LINKINFO))) * goto nla_put_failure; * * // Put a string attribute into the container * NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan"); * * // Append another container inside the open container to carry * // vlan specific attributes * if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA))) * goto nla_put_failure; * * // add vlan specific info attributes here... * * // Finish nesting the vlan attributes and close the second container. * nla_nest_end(msg, vlan); * * // Finish nesting the link info attribute and close the first container. * nla_nest_end(msg, info); * * return msg; * * // If any of the construction macros fails, we end up here. * nla_put_failure: * nlmsg_free(msg); * return NULL; * } * @endcode * * @par Example 2.1 Parsing a netlink message with attributes. * @code * int parse_message(struct nl_msg *msg) * { * // The policy defines two attributes: a 32 bit integer and a container * // for nested attributes. * struct nla_policy attr_policy[ATTR_MAX+1] = { * [ATTR_FOO] = { .type = NLA_U32 }, * [ATTR_BAR] = { .type = NLA_NESTED }, * }; * struct nlattr *attrs[ATTR_MAX+1]; * int err; * * // The nlmsg_parse() function will make sure that the message contains * // enough payload to hold the header (struct my_hdr), validates any * // attributes attached to the messages and stores a pointer to each * // attribute in the attrs[] array accessable by attribute type. * if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs, * ATTR_MAX, attr_policy)) < 0) * goto errout; * * if (attrs[ATTR_FOO]) { * // It is safe to directly access the attribute payload without * // any further checks since nlmsg_parse() enforced the policy. * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); * } * * if (attrs[ATTR_BAR]) { * struct nlattr *nested[NESTED_MAX+1]; * * // Attributes nested in a container can be parsed the same way * // as top level attributes. * if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR], * nested_policy)) < 0) * goto errout; * * // Process nested attributes here. * } * * err = 0; * errout: * return err; * } * @endcode * * @{ */ /** * @name Attribute Size Calculation * @{ */ /** @} */ /** * @name Parsing Attributes * @{ */ /** * Check if the attribute header and payload can be accessed safely. * @arg nla Attribute of any kind. * @arg remaining Number of bytes remaining in attribute stream. * * Verifies that the header and payload do not exceed the number of * bytes left in the attribute stream. This function must be called * before access the attribute header or payload when iterating over * the attribute stream using nla_next(). * * @return True if the attribute can be accessed safely, false otherwise. */ int nla_ok(const struct nlattr *nla, int remaining) { return remaining >= sizeof(*nla) && nla->nla_len >= sizeof(*nla) && nla->nla_len <= remaining; } /** * Return next attribute in a stream of attributes. * @arg nla Attribute of any kind. * @arg remaining Variable to count remaining bytes in stream. * * Calculates the offset to the next attribute based on the attribute * given. The attribute provided is assumed to be accessible, the * caller is responsible to use nla_ok() beforehand. The offset (length * of specified attribute including padding) is then subtracted from * the remaining bytes variable and a pointer to the next attribute is * returned. * * nla_next() can be called as long as remainig is >0. * * @return Pointer to next attribute. */ struct nlattr *nla_next(const struct nlattr *nla, int *remaining) { int totlen = NLA_ALIGN(nla->nla_len); *remaining -= totlen; return (struct nlattr *) ((char *) nla + totlen); } static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = { [NLA_U8] = sizeof(uint8_t), [NLA_U16] = sizeof(uint16_t), [NLA_U32] = sizeof(uint32_t), [NLA_U64] = sizeof(uint64_t), [NLA_STRING] = 1, }; static int validate_nla(struct nlattr *nla, int maxtype, struct nla_policy *policy) { struct nla_policy *pt; int minlen = 0, type = nla_type(nla); if (type <= 0 || type > maxtype) return 0; pt = &policy[type]; if (pt->type > NLA_TYPE_MAX) BUG(); if (pt->minlen) minlen = pt->minlen; else if (pt->type != NLA_UNSPEC) minlen = nla_attr_minlen[pt->type]; if (pt->type == NLA_FLAG && nla_len(nla) > 0) return -NLE_RANGE; if (nla_len(nla) < minlen) return -NLE_RANGE; if (pt->maxlen && nla_len(nla) > pt->maxlen) return -NLE_RANGE; if (pt->type == NLA_STRING) { char *data = nla_data(nla); if (data[nla_len(nla) - 1] != '\0') return -NLE_INVAL; } return 0; } /** * Create attribute index based on a stream of attributes. * @arg tb Index array to be filled (maxtype+1 elements). * @arg maxtype Maximum attribute type expected and accepted. * @arg head Head of attribute stream. * @arg len Length of attribute stream. * @arg policy Attribute validation policy. * * Iterates over the stream of attributes and stores a pointer to each * attribute in the index array using the attribute type as index to * the array. Attribute with a type greater than the maximum type * specified will be silently ignored in order to maintain backwards * compatibility. If \a policy is not NULL, the attribute will be * validated using the specified policy. * * @see nla_validate * @return 0 on success or a negative error code. */ int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len, struct nla_policy *policy) { struct nlattr *nla; int rem, err; memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); nla_for_each_attr(nla, head, len, rem) { int type = nla_type(nla); if (type == 0) { fprintf(stderr, "Illegal nla->nla_type == 0\n"); continue; } if (type <= maxtype) { if (policy) { err = validate_nla(nla, maxtype, policy); if (err < 0) goto errout; } tb[type] = nla; } } if (rem > 0) fprintf(stderr, "netlink: %d bytes leftover after parsing " "attributes.\n", rem); err = 0; errout: return err; } /** * Validate a stream of attributes. * @arg head Head of attributes stream. * @arg len Length of attributes stream. * @arg maxtype Maximum attribute type expected and accepted. * @arg policy Validation policy. * * Iterates over the stream of attributes and validates each attribute * one by one using the specified policy. Attributes with a type greater * than the maximum type specified will be silently ignored in order to * maintain backwards compatibility. * * See \ref attr_datatypes for more details on what kind of validation * checks are performed on each attribute data type. * * @return 0 on success or a negative error code. */ int nla_validate(struct nlattr *head, int len, int maxtype, struct nla_policy *policy) { struct nlattr *nla; int rem, err; nla_for_each_attr(nla, head, len, rem) { err = validate_nla(nla, maxtype, policy); if (err < 0) goto errout; } err = 0; errout: return err; } /** * Find a single attribute in a stream of attributes. * @arg head Head of attributes stream. * @arg len Length of attributes stream. * @arg attrtype Attribute type to look for. * * Iterates over the stream of attributes and compares each type with * the type specified. Returns the first attribute which matches the * type. * * @return Pointer to attribute found or NULL. */ struct nlattr *nla_find(struct nlattr *head, int len, int attrtype) { struct nlattr *nla; int rem; nla_for_each_attr(nla, head, len, rem) if (nla_type(nla) == attrtype) return nla; return NULL; } /** @} */ /** * @name Unspecific Attribute * @{ */ /** * Reserve space for a attribute. * @arg msg Netlink Message. * @arg attrtype Attribute Type. * @arg attrlen Length of payload. * * Reserves room for a attribute in the specified netlink message and * fills in the attribute header (type, length). Returns NULL if there * is unsuficient space for the attribute. * * Any padding between payload and the start of the next attribute is * zeroed out. * * @return Pointer to start of attribute or NULL on failure. */ struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen) { struct nlattr *nla; int tlen; tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen); if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size) return NULL; nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh); nla->nla_type = attrtype; nla->nla_len = nla_attr_size(attrlen); memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen)); msg->nm_nlh->nlmsg_len = tlen; NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d " "nlmsg_len=%d\n", msg, attrlen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype, msg->nm_nlh->nlmsg_len); return nla; } /** * Add a unspecific attribute to netlink message. * @arg msg Netlink message. * @arg attrtype Attribute type. * @arg datalen Length of data to be used as payload. * @arg data Pointer to data to be used as attribute payload. * * Reserves room for a unspecific attribute and copies the provided data * into the message as payload of the attribute. Returns an error if there * is insufficient space for the attribute. * * @see nla_reserve * @return 0 on success or a negative error code. */ int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data) { struct nlattr *nla; nla = nla_reserve(msg, attrtype, datalen); if (!nla) return -NLE_NOMEM; memcpy(nla_data(nla), data, datalen); NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n", msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype); return 0; } /** @} */